Prof. Dr. Yan Lu: Neuartige Batterien nachhaltig entwickeln

Seit 2009 forscht Yan Lu am Helmholtz-Zentrum Berlin. 2017 wurde sie Professorin an der Universität Potsdam und HZB. Nun ist sie auch zur Professorin an der FSU Jena ernannt worden.

Seit 2009 forscht Yan Lu am Helmholtz-Zentrum Berlin. 2017 wurde sie Professorin an der Universität Potsdam und HZB. Nun ist sie auch zur Professorin an der FSU Jena ernannt worden. © M. Setzpfandt / HZB

Yan Lu wurde gemeinsam mit dem HZB zur Professorin für Hybridmaterialien für elektrochemische Energiespeicher und Wandler an der Friedrich-Schiller-Universität Jena berufen. Herzlichen Glückwunsch!

„Herkömmliche Lithium-Ionen-Batterien sind zwar sehr leistungsfähig, aber auch teuer, denn sie benötigen neben Lithium auch Metalle wie Nickel und Kobalt“, sagt die Chemikerin Prof. Dr. Yan Lu. „Daher forsche ich an nachhaltigeren Alternativen, wie zum Beispiel Lithium-Schwefel-Batterien und auch an Batterien, die auf Hybridmaterialien basie­ren“, erläutert die 47-jährige Wissenschaftlerin, die seit diesem Semester an der Friedrich-Schiller-Universität Jena tätig ist. In ihrer Arbeit verbindet sie verschiedene Expertisen: Um Energie elektrochemisch verfügbar zu machen, kombiniert sie beispielsweise organische und anorganische Chemie und greift dabei unter anderem auch auf Untersuchungsmethoden aus der Biochemie zurück.

Im Rahmen ihrer gemeinsamen Berufung mit dem Helmholtz-Zentrum Berlin (HZB), wo sie weiterhin das Institut für Elektrochemische Energiespeicherung leitet, ist die neue Profes­sorin zudem Ko-Direktorin des 2023 in Jena von Friedrich-Schiller-Universität und HZB gegründeten Helmholtz-Instituts für Polymere in Energieanwendungen Jena (HIPOLE Jena).

Über Yan Lu

Nach ihrem Chemiestudium in Shanghai wurde Yan Lu an der TU Dresden promoviert und forschte anschließend erst in Bayreuth und ab 2009 am Helmholtz-Zentrum Berlin. 2017 wurde sie Professorin an der Universität Potsdam und am HZB. Neben ihrer Arbeit am HZB ist sie seit dem Wintersemester 2023/24 auch an der Universität Jena Professorin für Hybrid­materialien für elektrochemische Energiespeicher und Wandler.

FSU Jena/red.

  • Link kopieren

Das könnte Sie auch interessieren

  • MXene als „Rahmen“ für zweidimensionale Wasserfilme zeigt neue Eigenschaften
    Science Highlight
    13.08.2025
    MXene als „Rahmen“ für zweidimensionale Wasserfilme zeigt neue Eigenschaften
    Ein internationales Team unter Leitung von Dr. Tristan Petit und Prof. Yury Gogotsi hat MXene mit eingeschlossenem Wasser und Ionen an der BESSY II untersucht. Dabei ging das Wasser mit steigender Temperatur vom Zustand als lokalisierte Eiskluster in einen quasi-zweidimensionalen Wasserfilm über. Das Team entdeckte dabei, dass diese strukturellen Veränderungen des eingeschlossenen Wassers im MXene einen reversiblen Phasenübergang bewirken: vom Metall zum Halbleiter. Dies könnte die Entwicklung neuartiger Bauelemente oder Sensoren auf Basis von MXenen ermöglichen.
  • Iridiumfreie Katalysatoren für die saure Wasserelektrolyse untersucht
    Science Highlight
    13.08.2025
    Iridiumfreie Katalysatoren für die saure Wasserelektrolyse untersucht
    Wasserstoff wird künftig eine wichtige Rolle spielen, als Brennstoff und als Rohstoff für die Industrie. Um jedoch relevante Mengen an Wasserstoff zu produzieren, muss Wasserelektrolyse im Multi-Gigawatt-Maßstab machbar werden. Ein Engpass sind die benötigten Katalysatoren, insbesondere Iridium ist ein extrem seltenes Element. Eine internationale Kooperation hat daher Iridiumfreie Katalysatoren für die saure Wasserelektrolyse untersucht, die auf dem Element Kobalt basieren. Durch Untersuchungen, unter anderem am LiXEdrom an der Berliner Röntgenquelle BESSY II, konnten sie Prozesse bei der Wasserelektrolyse in einem Kobalt-Eisen-Blei-Oxid-Material als Anode aufklären. Die Studie ist in Nature Energy publiziert.
  • Lithium-Schwefel-Batterien mit wenig Elektrolyt: Problemzonen identifiziert
    Science Highlight
    12.08.2025
    Lithium-Schwefel-Batterien mit wenig Elektrolyt: Problemzonen identifiziert
    Mit einer zerstörungsfreien Methode hat ein Team am HZB erstmals Lithium-Schwefel-Batterien im praktischen Pouchzellenformat untersucht, die mit besonders wenig Elektrolyt-Flüssigkeit auskommen. Mit operando Neutronentomographie konnten sie in Echtzeit visualisieren, wie sich der flüssige Elektrolyt während des Ladens und Entladens über mehrere Schichten verteilt und die Elektroden benetzt. Diese Erkenntnisse liefern wertvolle Einblicke in die Mechanismen, die zum Versagen der Batterie führen können, und sind hilfreich für die Entwicklung kompakter Li-S-Batterien mit hoher Energiedichte.