14 Parameter auf einen Streich: Neues Instrument für die Optoelektronik

Die hellen Kugeln symbolisieren gebundene Ladungsträger (negative und positive) im Material. Der Lichtstrahl trennt diese Ladungen, die daraufhin im angelegten Magnetfeld auf unterschiedliche Weise abgelenkt werden. Mit der CLIMAT-Methode lassen sich mit einer Messung rund 14 verschiedene Parameter der Transporteigenschaften in Halbleitern messen, zum Beispiel Anzahl und Dichte, Lebenszeit, Diffusionslängen, und Mobilität.

Die hellen Kugeln symbolisieren gebundene Ladungsträger (negative und positive) im Material. Der Lichtstrahl trennt diese Ladungen, die daraufhin im angelegten Magnetfeld auf unterschiedliche Weise abgelenkt werden. Mit der CLIMAT-Methode lassen sich mit einer Messung rund 14 verschiedene Parameter der Transporteigenschaften in Halbleitern messen, zum Beispiel Anzahl und Dichte, Lebenszeit, Diffusionslängen, und Mobilität. © Laura Canil

Ein HZB-Physiker hat eine neue Methode entwickelt, um Halbleiter durch einen einzigen Messprozess umfassend zu charakterisieren. Der „Constant Light-Induced Magneto-Transport (CLIMAT)“ basiert auf dem Hall-Effekt und ermöglicht es, 14 verschiedene Parameter von negativen wie positiven Ladungsträgern zu erfassen. An zwölf unterschiedlichen Halbleitermaterialien demonstrierte nun ein großes Team die Tauglichkeit dieser neuen Methode, die sehr viel Arbeit spart. 

Solarzellen, Transistoren, Detektoren, Sensoren und LEDs haben eine Gemeinsamkeit: Sie bestehen aus Halbleitermaterialien, deren Ladungsträger erst durch Bestrahlung mit Licht (Photonen) freigesetzt werden. Die Photonen lösen Elektronen (negative Ladungsträger) aus ihren Orbitalen heraus, die sich durch das Material bewegen, bis sie nach einer Zeit wieder eingefangen werden. Zeitgleich entstehen „Löcher“ an den Stellen, wo die Elektronen fehlen – diese Löcher verhalten sich wie positiv geladene Ladungsträger und sind für die Leistungsfähigkeit der jeweiligen Anwendung ebenfalls wichtig. Das Verhalten der negativen wie positiven Ladungsträger in Halbleitern unterscheidet sich oft um Größenordnungen, von der Mobilität über die Diffusionslängen bis hin zur Lebenszeit. Bisher mussten die Parameter der Transporteigenschaften für jeden Ladungstyp extra ermittelt werden und erforderten darüber hinaus unterschiedliche Messmethoden.

Hall-Effekt raffiniert genutzt

Der HZB-Physiker Dr. Artem Musiienko hat nun im Rahmen seiner „Maria Skłodowska Curie Postdoctoral Fellowship“ eine neue Methode entwickelt, die in einer Messung alle 14 Parameter der positiven wie negativen Ladungsträger erfassen kann. Dafür nutzt er ein Magnetfeld, das senkrecht durch die Probe dringt und eine konstante Lichtquelle für die Ladungstrennung. Die freigesetzten Ladungen wandern entlang eines elektrischen Felds und werden durch das Magnetfeld senkrecht zu ihrer Bewegungsrichtung abgelenkt, wobei ihre Masse, ihre Mobilität und weitere Eigenschaften eine Rolle spielen. Aus den Signalen und insbesondere auch den Differenzen zwischen den Signalen der unterschiedlichen Ladungsträger lassen sich insgesamt 14 verschiedene Eigenschaften ermitteln, zeigte Musiienko mit einem übersichtlichen System aus Gleichungen.

Ladungstransport durchleuchtet

„Damit bietet CLIMAT mit einer Messung einen umfassenden Einblick in die komplizierten Mechanismen des Ladungstransports, sowohl der positiven wie der negativen Ladungsträger. Wir können das nutzen, um neuartige Halbleitermaterialien viel schneller einzuschätzen, zum Beispiel auf ihre Eignung als Solarzellen oder für andere Anwendungen“, meint Musiienko.

Unterschiedliche Halbleiter analysiert

Um die breite Anwendbarkeit zu demonstrieren, haben Forschungsteams am HZB, der Universität Potsdam und weiteren Einrichtungen in den USA, Schweiz, England und Ukraine nun insgesamt zwölf sehr unterschiedliche Halbleitermaterialien mit dieser Methode charakterisiert, darunter das klassische Silizium, Halogenid-Perowskit-Filme, organische Halbleiter wie Y6, Halbisolatoren, selbstorganisierte Monoschichten und Nanopartikel. Die Ergebnisse sind nun in Nature communications veröffentlicht.

Ziel: Kompaktes Instrument

Die neue Methode gilt als bahnbrechend, urteilen Fachleute wie Prof. Vitaly Podzorov von der Rutgers University, USA, der in Nature Electronics die CLIMAT-Methode mit 15 von 16 Punkten bewertet hat. Insbesondere spart CLIMAT viele Arbeitsschritte, die bei den bisher üblichen Messungen anfallen und damit auch wertvolle Zeit. Anfang 2024 wurde die CLIMAT-Methode vom Europäischen Patentamt unter der Nummer EP23173681.0 zur Patentierung zugelassen. „Derzeit laufen Verhandlungen mit Unternehmen über die Lizenzierung unserer Methode“, sagt Musiienko. Das Ziel ist ein kompaktes Messgerät, etwa so groß wie ein Notebook.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Elektrokatalyse mit doppeltem Nutzen – ein Überblick
    Science Highlight
    31.10.2025
    Elektrokatalyse mit doppeltem Nutzen – ein Überblick
    Hybride Elektrokatalysatoren können beispielsweise gleichzeitig grünen Wasserstoff und wertvolle organische Verbindungen produzieren. Dies verspricht wirtschaftlich rentable Anwendungen. Die komplexen katalytischen Reaktionen, die bei der Herstellung organischer Verbindungen ablaufen, sind jedoch noch nicht vollständig verstanden. Moderne Röntgenmethoden an Synchrotronquellen wie BESSY II ermöglichen es, Katalysatormaterialien und die an ihren Oberflächen ablaufenden Reaktionen in Echtzeit, in situ und unter realen Betriebsbedingungen zu analysieren. Dies liefert Erkenntnisse, die für eine gezielte Optimierung genutzt werden können. Ein Team hat nun in Nature Reviews Chemistry einen Überblick über den aktuellen Wissensstand veröffentlicht.
  • Erfolgreicher Masterabschluss zu IR-Thermografie an Solarfassaden
    Nachricht
    22.10.2025
    Erfolgreicher Masterabschluss zu IR-Thermografie an Solarfassaden
    Wir freuen uns sehr und gratulieren unserer studentischen Mitarbeiterin Luca Raschke zum erfolgreich abgeschlossenen Masterstudium der Regenerativen Energien an der Hochschule für Technik und Wirtschaft Berlin – und das mit Auszeichnung!
  • BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Science Highlight
    21.10.2025
    BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Erstmals ist es einem Team an BESSY II gelungen, experimentell eindimensionale elektronische Eigenschaften in Phosphor nachzuweisen. Die Proben bestanden aus kurzen Ketten aus Phosphoratomen, die sich auf einem Silbersubstrat selbst organisiert in bestimmten Winkeln bilden. Durch eine raffinierte Auswertung gelang es, die Beiträge von unterschiedlich ausgerichteten Ketten voneinander zu trennen und zu zeigen, dass die elektronischen Eigenschaften tatsächlich einen eindimensionalen Charakter besitzen. Berechnungen zeigten darüber hinaus, dass ein spannender Phasenübergang zu erwarten ist. Während das Material aus einzelnen Ketten halbleitend ist, wäre eine sehr dichte Kettenstruktur metallisch.