Brennstoffzellen: Oxidationsprozesse von Phosphorsäure aufgeklärt

Die Illustration zeigt vier unterschiedliche Oxidationspfade (1-4) von w&auml;ssriger Phosphors&auml;ure (H<sub>3</sub>PO<sub>3</sub>), die mit XANES aufgekl&auml;rt werden konnten. Alle diese Reaktionen h&auml;ngen von der vorhandenen Feuchtigkeit ab.

Die Illustration zeigt vier unterschiedliche Oxidationspfade (1-4) von wässriger Phosphorsäure (H3PO3), die mit XANES aufgeklärt werden konnten. Alle diese Reaktionen hängen von der vorhandenen Feuchtigkeit ab. © HZB

Die Wechselwirkungen zwischen Phosporsäure und dem Platin-Katalysator in Hochtemperatur-PEM-Brennstoffzellen sind komplexer als bisher angenommen. Röntgen-Experimente an BESSY II in einem mittleren Energiebereich (tender x-rays) haben die vielfältigen Oxidationsprozesse an der Platin-Elektrolyt-Grenzfläche entschlüsselt. Die Ergebnisse zeigen auch, dass die Feuchtigkeit in der Brennstoffzelle diese Prozesse beeinflusst, so dass sich hier Möglichkeiten bieten, um Lebensdauer und Wirkungsgrad von Brennstoffzellen zu erhöhen. 


Wasserstoff-Brennstoffzellen wandeln die chemische Energie von Wasserstoff (H2) in elektrische Energie um. Als mikro-stationäre Stromquellen eignen sich vor allem die Hochtemperatur-Polymerelektrolytmembran-Brennstoffzellen (HT-PEMFCs). Ein Nachteil dieser HT-PEMFCs ist jedoch, dass der Protonenleiter Phosphorsäure (H3PO4) aus der H3PO4-dotierten Polybenzimidazol-Membran auslaugt und den Platinkatalysator vergiftet. Neuere Studien zeigen weitere Komplikationen während des Betriebs der HT-PEMFC: Dabei wird ein Teil des H3PO4 zu H3PO3 reduziert, was zu einer weiteren Vergiftung der Platinkatalysatoren und damit zu einem erheblichen Leistungsverlust führen kann.

Komplexe Prozesse und Wechselwirkungen

Eine frühere Studie des Teams von Prof. Dr. Marcus Bär zeigte, dass an der Grenzfläche zwischen Platin und wässrigem H3PO3 auch gegenläufige Prozesse stattfinden und dass die Wechselwirkungen zwischen dem Platinkatalysator und H3PO3/ H3PO4 sehr komplex sind: Während H3PO3 zu einer Vergiftung des Platinkatalysators führen kann, kann Platin gleichzeitig die Oxidation von H3PO3 zurück zu H3PO4 katalysieren.

Realitätsnahe Versuchsbedingungen

Nun hat Bärs Team das Oxidationsverhalten von wässrigem H3PO3 unter Bedingungen untersucht, die den Betriebsbedingungen von HT-PEMFCs nahekommen.  Die chemischen Prozesse wurden in einer beheizbaren elektrochemischen Zelle analysiert, die für In-situ-Röntgenuntersuchungen geeignet ist. Die Experimente fanden an der kürzlich im Energy Materials In-situ Laboratory Berlin (EMIL) eingerichteten OÆSE-Endstation statt, und zwar mit intensivem Röntgenlicht im Energiebereich von 2 keV - 5 keV (zwischen weicher und harter Röntgenstrahlung, englisch: tender x-rays), das von der EMIL-Beamline an der Röntgenquelle BESSY II bereitgestellt wird. In diesem Energiebereich lassen sich mit der Methode der Röntgenabsorptions-Nahkantenstrukturspektroskopie (englisch: X-ray absorption near-edge structure spectroscopy, kurz XANES) Oxidationsprozesse von H3PO3 zu H3PO4 verfolgen.

Unterschiedliche Oxidationsprozesse

"Wir haben damit verschiedene Prozesse für diese Oxidationsreaktion aufgedeckt, darunter die platinkatalysierte chemische Oxidation, die elektrochemische Oxidation unter positiver Potentialvorspannung an der Platinelektrode und die wärmegeförderte Oxidation. Diese spektroskopischen In-situ-Ergebnisse werden auch durch Ionenaustauschchromatographie und elektrochemische In-situ-Charakterisierungen bestätigt", erklärt Enggar Wibowo, Erstautor der Studie und Doktorand in Bärs Team. "Bemerkenswerterweise sind alle diese Oxidationswege mit Reaktionen mit Wasser verbunden. Das zeigt, dass die Feuchtigkeit in der Brennstoffzelle einen erheblichen Einfluss auf diese Prozesse hat."

Feuchtigkeit zur Optimierung nutzen

Damit weisen die Ergebnisse auch auf mögliche Verbesserungen in den Betriebsbedingungen von HT-PEM-Brennstoffzellen hin, z.B. durch eine Steuerung der Feuchtigkeit, um H3PO3 zu H3PO4 zu oxidieren. "Die Betriebsbedingungen von HT-PEM-Brennstoffzellen könnten damit optimiert werden, um eine Vergiftung des Katalysators durch H3PO3 zu verhindern und die Effizienz dieser Brennstoffzellen zu erhöhen", so Wibowo.

Vorfreude auf BESSY III

"Die Arbeit klärt einen wichtigen Degradationspfad von Brennstoffzellen auf und ist ein Beitrag auf dem Weg zu einer Wasserstoff-basierten Energieversorgung", sagt Marcus Bär. "Sie zeigt auch den großen Nutzen des mittleren „tender“ Röntgenbereichs, und wir freuen uns auf BESSY III, das diese Lücke zwischen weicher und harter Röntgenstrahlung schließen soll", fügt er hinzu.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Science Highlight
    21.10.2025
    BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Erstmals ist es einem Team an BESSY II gelungen, experimentell eindimensionale elektronische Eigenschaften in einem Material nachzuweisen. Die Proben bestanden aus kurzen Ketten aus Phosphoratomen, die sich auf einem Silbersubstrat selbst organisiert in bestimmten Winkeln bilden. Durch eine raffinierte Auswertung gelang es, die Beiträge von unterschiedlich ausgerichteten Ketten voneinander zu trennen und zu zeigen, dass die elektronischen Eigenschaften tatsächlich einen eindimensionalen Charakter besitzen. Berechnungen zeigten darüber hinaus, dass ein spannender Phasenübergang zu erwarten ist. Während das Material aus einzelnen Ketten halbleitend ist, wäre eine sehr dichte Kettenstruktur metallisch.
  • Ein innerer Kompass für Meereslebewesen im Paläozän
    Science Highlight
    20.10.2025
    Ein innerer Kompass für Meereslebewesen im Paläozän
    Vor Jahrmillionen produzierten einige Meeresorganismen mysteriöse Magnetpartikel von ungewöhnlicher Größe, die heute als Fossilien in Sedimenten zu finden sind. Nun ist es einem internationalen Team gelungen, die magnetischen Domänen auf einem dieser „Riesenmagnetfossilien” mit einer raffinierten Methode an der Diamond-Röntgenquelle zu kartieren. Ihre Analyse zeigt, dass diese Partikel es den Organismen ermöglicht haben könnten, winzige Schwankungen sowohl in der Richtung als auch in der Intensität des Erdmagnetfelds wahrzunehmen. Dadurch konnten sie sich verorten und über den Ozean navigieren. Die neue Methode eignet sich auch, um zu testen, ob bestimmte Eisenoxidpartikel in Marsproben tatsächlich biogenen Ursprungs sind.
  • Was vibrierende Moleküle über die Zellbiologie verraten
    Science Highlight
    16.10.2025
    Was vibrierende Moleküle über die Zellbiologie verraten
    Mit Infrarot-Vibrationsspektroskopie an BESSY II lassen sich hochaufgelöste Karten von Molekülen in lebenden Zellen und Zellorganellen in ihrer natürlichen wässrigen Umgebung erstellen, zeigt eine neue Studie von einem Team aus HZB und Humboldt-Universität zu Berlin. Die Nano-IR-Spektroskopie mit SNOM an der IRIS-Beamline eignet sich, um winzige biologische Proben zu untersuchen und Infrarotbilder der Molekülschwingungen mit Nanometer-Auflösung zu erzeugen. Es ist sogar möglich, 3D-Informationen, also Infrarot-Tomogramme, aufzuzeichnen. Um das Verfahren zu testen, hat das Team Fibroblasten auf einer hochtransparenten SiC-Membran gezüchtet und in vivo untersucht. Die Methode ermöglicht neue Einblicke in die Zellbiologie.