Gefriergussverfahren – Eine Anleitung für komplex strukturierte Materialien

Die Aufnahme mit einem Rasterelektronenmikroskop zeigt ein komplexes Materialsystem aus Chitosan und Nanocellulose. Das Chitosan-Gerüst wurde mit dem Gefriergussverfahren hergestellt. Der Maßstab ist 100 μm. Die ausgerichteten Poren und die Rippen auf der Zellwand dienen als Struktur für die Reparatur peripherer Nerven, sie locken Axone an oder ermöglichen weitere biomedizinische Anwendungen.

Die Aufnahme mit einem Rasterelektronenmikroskop zeigt ein komplexes Materialsystem aus Chitosan und Nanocellulose. Das Chitosan-Gerüst wurde mit dem Gefriergussverfahren hergestellt. Der Maßstab ist 100 μm. Die ausgerichteten Poren und die Rippen auf der Zellwand dienen als Struktur für die Reparatur peripherer Nerven, sie locken Axone an oder ermöglichen weitere biomedizinische Anwendungen. © Kaiyang Yin / University of Freiburg

Die Röntgentomographie zeigt hier in 3D die Struktur, die ein Modellsystem auf Basis einer Zuckerlösung ausgebildet hat. Die Eiskristalle erscheinen in der Abbildung blau, die Zuckerlösung ist transparent. Bemerkenswert ist, dass sich durch den Gefrierguss sowohl wandartige Strukturen als auch kugelige „Froschfinger“ bilden.

Die Röntgentomographie zeigt hier in 3D die Struktur, die ein Modellsystem auf Basis einer Zuckerlösung ausgebildet hat. Die Eiskristalle erscheinen in der Abbildung blau, die Zuckerlösung ist transparent. Bemerkenswert ist, dass sich durch den Gefrierguss sowohl wandartige Strukturen als auch kugelige „Froschfinger“ bilden. © Paul Kamm / HZB

Gefriergussverfahren sind ein kostengünstiger Weg, um hochporöse Materialien mit hierarchischer Architektur, gerichteter Porosität und multifunktionalen inneren Oberflächen herzustellen. Gefriergegossene Materialien eignen sich für viele Anwendungen, von der Medizin bis zur Umwelt- und Energietechnik. Ein Beitrag im Fachjournal „Nature Reviews Methods Primer“ vermittelt nun eine Anleitung zu Gefriergussverfahren, zeigt einen Überblick, was gefriergegossene Werkstoffe heute leisten, und skizziert neue Einsatzbereiche. Ein besonderer Fokus liegt auf der Analyse dieser Materialien mit Tomoskopie.

„Als uns der weltbekannte „Nature“-Verlag die Möglichkeit gab, einen Nature Reviews Methods Primer mit Überblick und Anleitungen über das Gefriergussverfahren zu schreiben, waren wir begeistert“, erzählt die Materialexpertin Prof. Dr. Ulrike Wegst (Northeastern University, Boston, MA, USA und TU Berlin). „Gemeinsam mit den Tomoskopie-Experten Dr. Francisco García-Moreno und Dr. Paul Kamm  (HZB und TU Berlin), hatten Dr. Kaiyang Yin (heute Humboldt Research Fellow an der Uni Freiburg), und ich gerade erste in situ Versuche durchführen und neue Phänomene zu Eiskristallwachstum und Strukturbildung entdecken können. So lag es auf der Hand, in unserem neuen Leitfaden für "Nature Reviews Methods Primers" (Impaktfaktor 39,8) experimentellen Methoden der Gefriergussverfahren mit Verfahren zu deren Analyse zu kombinieren.“

Röntgentomoskopie: beim Gefrieren zusehen

Nach einer Einführung in Gefriergussverfahren stellt der Leitfaden auch die Methoden vor, mit denen sich die komplexen Materialarchitekturen und -eigenschaften analysieren lassen. Besondere Möglichkeiten bietet dabei die Röntgentomoskopie, mit der sich Kristallwachstum und Strukturbildung in allen Materialsystemen (polymeren, keramischen, metallischen, sowie Verbundmaterialien) direkt während des Gefrierens in Echtzeit und in 3D beobachten lassen. „Beim Gefriergießen von wässrigen Systemen wachsen Kristalle zum Beispiel unterschiedlich schnell in verschiedene Richtungen. Da sind Tomoskopie-Verfahren besonders attraktiv, weil sie es erlauben, das anisotrope Kristallwachstum quantitativ aufzuzeichnen,“ sagt García-Moreno.

Von Medizin bis zu Batterie-Elektroden

Vor über 40 Jahren wurde das Gefriergussverfahren für die Herstellung von biologischen Stützstrukturen entwickelt. Bald zeigte sich, dass gefriergegossene Materialien aufgrund ihrer hochporösen Struktur sich gut in Wirtsgewebe integrieren und Heilungsprozesse unterstützen können. Inzwischen gibt es vielfältigste Anwendungen nicht nur in der Biomedizin, sondern auch im technischen Bereich, von neuartigen Katalysatoren bis zu hochporösen Elektroden für Batterien oder Brennstoffzellen. Dafür steht eine große Vielfalt an Lösungsmitteln, gelösten Stoffen und Partikeln zur Verfügung, mit denen sich die gewünschten Strukturen, Formen und Funktionalitäten gezielt erzeugen lassen.

Wie funktioniert der Gefrierguss?

Zunächst wird eine Substanz in einem Lösungsmittel gelöst oder aufgeschwemmt. Die Flüssigkeit wird in einer Kühlzelle vom Boden her mit einer definierten Kühlrate (gerichtetes Gefrieren) abgekühlt, so dass das Lösungsmittel gefriert. Das kristallisierte Lösungsmittel wird dann über ein Sublimationsverfahren entfernt. Übrig bleibt die vormals darin gelöste Substanz, welche nun eine komplexe, hochporöse Architektur bildet.

Maßgeschneiderte Strukturen

Mit Gefriergussverfahren lassen sich gezielt hierarchisch komplexe Materialarchitekturen erzeugen, die auch die mechanischen, thermischen und viele andere Eigenschaften des Materials bestimmen. Dafür können Größe und Anzahl der Poren, ihre Geometrie und Ausrichtung sowie die Partikelpackung in den Zellwänden und die Oberflächenmerkmale der Zellwände jeweils für die gewünschte Anwendung maßgeschneidert werden.

Ausblick: Experimente unter Mikrogravitation

Nun sind Experimente auf der Internationalen Raumstation geplant. Denn dort herrscht Mikrogravitation, also eine enorm verringerte Schwerkraft, so dass Effekte durch Sedimentation und Konvektion beim Gefrierguss deutlich geringer sind. Dadurch erwarten die Experten weitere Fortschritte beim Verständnis von Gefriergussverfahren und der Herstellung von defektfreien, für bestimmte Anwendung maßgeschneiderten Werkstoffe.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Schlüsseltechnologie für eine Zukunft ohne fossile Energieträger
    Interview
    21.08.2025
    Schlüsseltechnologie für eine Zukunft ohne fossile Energieträger
    Im Juni und Juli 2025 verbrachte der Katalyseforscher Nico Fischer Zeit am HZB. Es war sein „Sabbatical“, für einige Monate war er von seinen Pflichten als Direktor des Katalyse-Instituts in Cape Town entbunden und konnte sich nur der Forschung widmen. Mit dem HZB arbeitet sein Institut an zwei Projekten, die mit Hilfe von neuartigen Katalysatortechnologien umweltfreundliche Alternativen erschließen sollen. Mit ihm sprach Antonia Rötger.

  • 5000. Patient in der Augentumortherapie mit Protonen behandelt
    Nachricht
    19.08.2025
    5000. Patient in der Augentumortherapie mit Protonen behandelt
    Seit mehr als 20 Jahren bieten die Charité – Universitätsmedizin Berlin und das Helmholtz-Zentrum Berlin (HZB) gemeinsam die Bestrahlung von Augentumoren mit Protonen an. Dafür betreibt das HZB einen Protonenbeschleuniger in Berlin-Wannsee, die medizinische Betreuung der Patienten erfolgt durch die Charité. Anfang August wurde der 5000. Patient behandelt.
  • Iridiumfreie Katalysatoren für die saure Wasserelektrolyse untersucht
    Science Highlight
    13.08.2025
    Iridiumfreie Katalysatoren für die saure Wasserelektrolyse untersucht
    Wasserstoff wird künftig eine wichtige Rolle spielen, als Brennstoff und als Rohstoff für die Industrie. Um jedoch relevante Mengen an Wasserstoff zu produzieren, muss Wasserelektrolyse im Multi-Gigawatt-Maßstab machbar werden. Ein Engpass sind die benötigten Katalysatoren, insbesondere Iridium ist ein extrem seltenes Element. Eine internationale Kooperation hat daher Iridiumfreie Katalysatoren für die saure Wasserelektrolyse untersucht, die auf dem Element Kobalt basieren. Durch Untersuchungen, unter anderem am LiXEdrom an der Berliner Röntgenquelle BESSY II, konnten sie Prozesse bei der Wasserelektrolyse in einem Kobalt-Eisen-Blei-Oxid-Material als Anode aufklären. Die Studie ist in Nature Energy publiziert.