MXenes for energy storage: Chemical imaging more than just surface deep

<p class="MsoCaption">Scanning X-ray images of a dismounted Li-ion battery with cycled MXene electrode (green), electrolyte/ carbonate species (red) and separator (yellow). The Transmission (bulk-sensitive) image is on the left, the electron yield (surface-sensitive) image on the right.

Scanning X-ray images of a dismounted Li-ion battery with cycled MXene electrode (green), electrolyte/ carbonate species (red) and separator (yellow). The Transmission (bulk-sensitive) image is on the left, the electron yield (surface-sensitive) image on the right. © HZB

What is so special about MXenes and why is the new method so valuable? The short cartoon manages to answer these questions in just a few images. The images were created with the help of ChatGPT.

What is so special about MXenes and why is the new method so valuable? The short cartoon manages to answer these questions in just a few images. The images were created with the help of ChatGPT. © Faidra Amargianou/ChatGPT

A new method in spectromicroscopy significantly improves the study of chemical reactions at the nanoscale, both on surfaces and inside layered materials. Scanning X-ray microscopy (SXM) at MAXYMUS beamline of BESSY II enables the investigation of chemical species adsorbed on the top layer (surface) or intercalated within the MXene electrode (bulk) with high chemical sensitivity. The method was developed by a HZB team led by Dr. Tristan Petit. The scientists demonstrated among others first SXM on MXene flakes, a material used as electrode in lithium-ion batteries.

Since their discovery in 2011, MXenes have gathered significant scientific interest due to their versatile tunable properties and diverse applications, from energy storage to electromagnetic shielding. Researchers have been working to decipher the complex chemistry of MXenes at the nanoscale.

The team of Dr. Tristan Petit now made a significant progress in MXene characterization, as described in their recent publication. They utilized SXM to investigate the chemical bonding of Ti3C2Tx MXenes, with Tx denoting the terminations (Tx=O, OH, F, Cl), with high spatial and spectral resolution. The novelty in this work is to combine simultaneously two detection modes, transmission and electron yield, enabling different probing depths.

SXM provided detailed insights into the chemical composition and structure of MXenes. According to Faidra Amargianou, first author of the study: "Our findings shed light on the chemical bonding within MXene structure, and with surrounding species, offering new perspective for their utilization across various applications, especially in electrochemical energy storage."

For the first time, SXM was employed to image MXenes, revealing details of the local bonding between titanium and terminations within the MXene structure. The researchers also examined the influence of different synthesis routes on MXene chemistry, shedding light on the impact of terminations on the electronic properties of MXene.

Furthermore, the application of SXM in analyzing MXene-based materials in lithium-ion batteries yielded valuable insights into changes in MXene chemistry after battery cycling. As Faidra Amargianou explains, “The bulk of MXene electrode remains stable during electrochemical cycling with signs of possible Li+ intercalation. Electrolyte does not lead to degradation of the MXene and lays on top of the MXene electrode”.

In summary, this study provides valuable insights into the local chemistry of MXenes and underscores the potential of SXM in the characterization of other layered materials. As Petit concludes, "This work highlights the significance of advanced chemical imaging techniques like SXM in unraveling the interactions of layered materials in complex systems. We are currently working on enabling in situ electrochemical SXM measurements directly in liquid environment. "

Further information:

This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 947852).

arö

  • Copy link

You might also be interested in

  • Ernst Eckhard Koch Prize and Innovation Award on Synchrotron Radiation 2025
    News
    05.12.2025
    Ernst Eckhard Koch Prize and Innovation Award on Synchrotron Radiation 2025
    At the 27th BESSY@HZB User Meeting, the Friends of HZB honoured the dissertation of Dr Enggar Pramanto Wibowo (Friedrich-Alexander University Erlangen-Nuremberg). The Innovation Award on Synchrotron Radiation 2025 went to Prof. Tim Salditt (Georg-August-University Göttingen) and Professors Danny D. Jonigk and Maximilian Ackermann (both, University Hospital of RWTH Aachen University). 
  • Bright prospects for tin perovskite solar cells
    Science Highlight
    03.12.2025
    Bright prospects for tin perovskite solar cells
    Perovskite solar cells are widely regarded as the next generation photovoltaic technology. However, they are not yet stable enough in the long term for widespread commercial use. One reason for this is migrating ions, which cause degradation of the semiconducting material over time. A team from HZB and the University of Potsdam has now investigated the ion density in four different, widely used perovskite compounds and discovered significant differences. Tin perovskite semiconductors produced with an alternative solvent had a particular low ion density — only one tenth that of lead perovskite semiconductors. This suggests that tin-based perovskites could be used to make solar cells that are not only really environmentally friendly but also very stable.

  • Synchrotron radiation sources: toolboxes for quantum technologies
    Science Highlight
    01.12.2025
    Synchrotron radiation sources: toolboxes for quantum technologies
    Synchrotron radiation sources generate highly brilliant light pulses, ranging from infrared to hard X-rays, which can be used to gain deep insights into complex materials. An international team has now published an overview on synchrotron methods for the further development of quantum materials and technologies in the journal Advanced Functional Materials: Using concrete examples, they show how these unique tools can help to unlock the potential of quantum technologies such as quantum computing, overcome production barriers and pave the way for future breakthroughs.