MXene als Energiespeicher: Chemische Bildgebung blickt nun tiefer

Aufnahmen einer zerlegten Li-Ionen-Batterie mit zyklischer MXene-Elektrode (grün), Elektrolyt/Karbonat-Spezies (rot) und Separator (gelb). Mehr Erläuterungen zur Bildgebung finden sich in der Publikation.

Aufnahmen einer zerlegten Li-Ionen-Batterie mit zyklischer MXene-Elektrode (grün), Elektrolyt/Karbonat-Spezies (rot) und Separator (gelb). Mehr Erläuterungen zur Bildgebung finden sich in der Publikation. © HZB

Was ist das Besondere an den MXenen und warum ist die neue Methode so wertvoll? In wenigen Bildern schafft der kurze Cartoon es, diese Fragen zu beantworten. Erstellt wurden die Bilder mit Hilfe von ChatGPT.

Was ist das Besondere an den MXenen und warum ist die neue Methode so wertvoll? In wenigen Bildern schafft der kurze Cartoon es, diese Fragen zu beantworten. Erstellt wurden die Bilder mit Hilfe von ChatGPT. © Faidra Amargianou/ChatGPT

Eine neue Methode in der Spektromikroskopie verbessert die Untersuchung chemischer Reaktionen auf der Nanoskala, sowohl auf Oberflächen als auch im Inneren von Schichtmaterialien. Die Raster-Röntgenmikroskopie (SXM) an der MAXYMUS-Beamline von BESSY II ermöglicht den hochsensitiven Nachweis von chemischen Gruppen, die an der obersten Schicht (Oberfläche) adsorbiert oder in der MXene-Elektrode (Volumen) eingelagert sind. Die Methode wurde von einem HZB-Team unter der Leitung von Dr. Tristan Petit entwickelt. Das Team demonstrierte die Methode nun an MXene-Flocken, einem Material, das als Elektrode in Lithium-Ionen-Batterien eingesetzt wird.

Seit ihrer Entdeckung im Jahr 2011 haben MXene aufgrund ihrer vielseitigen, abstimmbaren Eigenschaften und interessanter Anwendungen - von der Energiespeicherung bis zur elektromagnetischen Abschirmung - großes wissenschaftliches Interesse geweckt. Auf der Nanoskala finden dabei komplexe chemische Prozesse statt.

Das Team von Dr. Tristan Petit hat nun einen bedeutenden Fortschritt bei der Charakterisierung von MXenen erzielt. Sie nutzten die Raster-Röntgenmikroskopie (Scanning X-ray microscopy oder SXM), um die chemische Bindung von Ti3C2Tx-MXenen mit hoher räumlicher und spektraler Auflösung zu untersuchen. Dabei steht Tx für unterschiedliche Endgruppen (Tx=O, OH, F, Cl). Das Neue ist, dass die Messdaten gleichzeitig über zwei Detektionsmodi erfasst werden, der Transmission und der Elektronenausbeute. Dies ermöglicht unterschiedliche Sondierungstiefen.

Das Experiment, das an der MAXYMUS-Beamline von BESSY II stattfand, lieferte detaillierte Einblicke in die chemische Zusammensetzung und Struktur von MXenen. Faidra Amargianou, die Erstautorin der Studie, sagt dazu: "Unsere Ergebnisse werfen ein Licht auf die chemischen Bindungen innerhalb der MXene-Struktur und mit den umgebenden Spezies und bieten neue Perspektiven für ihre Nutzung in verschiedenen Anwendungen, insbesondere in der elektrochemischen Energiespeicherung."

Zum ersten Mal wurde SXM eingesetzt, um MXene abzubilden, wodurch Details der lokalen Bindungen zwischen Titan und Endverbindungen innerhalb der MXen-Struktur sichtbar wurden. Die Forscher untersuchten auch den Einfluss verschiedener Synthesewege auf die MXen-Chemie und beleuchteten die Auswirkungen von Endungen auf die elektronischen Eigenschaften von MXene.

Darüber hinaus lieferte die Anwendung von SXM bei der Analyse von MXen-basierten Materialien in Lithium-Ionen-Batterien wertvolle Erkenntnisse über die Veränderungen in der MXen-Chemie nach dem Batteriewechsel. Faidra Amargianou erklärt: "Der Großteil der MXen-Elektrode bleibt während der elektrochemischen Zyklen stabil, mit Anzeichen einer möglichen Li+-Einlagerung. Der Elektrolyt führt nicht zum Abbau des MXens und liegt auf der MXenelektrode auf".

Die Studie liefert wertvolle Einblicke in die lokale Chemie von MXenen und verdeutlicht das Potenzial der SXM für die Charakterisierung anderer Schichtmaterialien. Petit schlussfolgert: "Chemische Bildgebungsverfahren wie SXM können dazu genutzt werden, um die Wechselwirkungen von Schichtmaterialien in komplexen Systemen zu entschlüsseln. Wir arbeiten derzeit daran, elektrochemische SXM-Messungen in situ direkt in flüssiger Umgebung zu ermöglichen. "

Weitere Informationen:

Dieses Projekt wurde vom Europäischen Forschungsrat (ERC) im Rahmen des Forschungs- und Innovationsprogramms "Horizont 2020" der Europäischen Union gefördert (Fördervereinbarung Nr. 947852).

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Elektrokatalyse mit doppeltem Nutzen – ein Überblick
    Science Highlight
    31.10.2025
    Elektrokatalyse mit doppeltem Nutzen – ein Überblick
    Hybride Elektrokatalysatoren können beispielsweise gleichzeitig grünen Wasserstoff und wertvolle organische Verbindungen produzieren. Dies verspricht wirtschaftlich rentable Anwendungen. Die komplexen katalytischen Reaktionen, die bei der Herstellung organischer Verbindungen ablaufen, sind jedoch noch nicht vollständig verstanden. Moderne Röntgenmethoden an Synchrotronquellen wie BESSY II ermöglichen es, Katalysatormaterialien und die an ihren Oberflächen ablaufenden Reaktionen in Echtzeit, in situ und unter realen Betriebsbedingungen zu analysieren. Dies liefert Erkenntnisse, die für eine gezielte Optimierung genutzt werden können. Ein Team hat nun in Nature Reviews Chemistry einen Überblick über den aktuellen Wissensstand veröffentlicht.
  • Erfolgreicher Masterabschluss zu IR-Thermografie an Solarfassaden
    Nachricht
    22.10.2025
    Erfolgreicher Masterabschluss zu IR-Thermografie an Solarfassaden
    Wir freuen uns sehr und gratulieren unserer studentischen Mitarbeiterin Luca Raschke zum erfolgreich abgeschlossenen Masterstudium der Regenerativen Energien an der Hochschule für Technik und Wirtschaft Berlin – und das mit Auszeichnung!
  • BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Science Highlight
    21.10.2025
    BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Erstmals ist es einem Team an BESSY II gelungen, experimentell eindimensionale elektronische Eigenschaften in Phosphor nachzuweisen. Die Proben bestanden aus kurzen Ketten aus Phosphoratomen, die sich auf einem Silbersubstrat selbst organisiert in bestimmten Winkeln bilden. Durch eine raffinierte Auswertung gelang es, die Beiträge von unterschiedlich ausgerichteten Ketten voneinander zu trennen und zu zeigen, dass die elektronischen Eigenschaften tatsächlich einen eindimensionalen Charakter besitzen. Berechnungen zeigten darüber hinaus, dass ein spannender Phasenübergang zu erwarten ist. Während das Material aus einzelnen Ketten halbleitend ist, wäre eine sehr dichte Kettenstruktur metallisch.