Neue Methode zur Absorptionskorrektur für bessere Zahnfüllungen

Das Kompositbild (aus den Daten der micro-XRF-Analyse) zeigt die Verteilung der Elemente Kalzium (Ca, weiß: Zahn) Ytterbium (Yb, magenta: Füllung) und Zink (Zn, rot: Sealer) in einem behandelten menschlichen Zahn. Dabei lässt sich erkennen, dass Zink aus dem Sealer-Material in den Zahn diffundiert.

Das Kompositbild (aus den Daten der micro-XRF-Analyse) zeigt die Verteilung der Elemente Kalzium (Ca, weiß: Zahn) Ytterbium (Yb, magenta: Füllung) und Zink (Zn, rot: Sealer) in einem behandelten menschlichen Zahn. Dabei lässt sich erkennen, dass Zink aus dem Sealer-Material in den Zahn diffundiert. © Leona Bauer (TU Berlin/HZB)

Ein Team um Dr. Ioanna Mantouvalou hat eine Methode entwickelt, um die Verteilung von chemischen Elementen in Dentalmaterialien präziser als bisher möglich darzustellen. Die konfokale mikro-Röntgenfluoreszenzanalyse (micro-XRF) liefert dreidimensional aufgelöste Elementbilder, die Verzerrungen enthalten. Sie entstehen, wenn Röntgenstrahlen Materialien unterschiedlicher Dichte und Zusammensetzung durchdringen. Mit Mikro-CT-Daten, die detaillierte 3D-Bilder der Materialstruktur liefern, und chemischen Informationen aus Röntgenabsorptionsspektroskopie (XAS) - Experimenten im Labor (BLiX, TU Berlin) und an der Synchrotronstrahlungsquelle BESSY II haben die Forschenden das Verfahren nun verbessert.

„Wir können nun genauere Messungen durchführen“, sagt Ioanna Mantouvalou: „Die Absorptionskorrektur mit Mikro-CT und XAS berücksichtigt, wie stark verschiedene Materialien Röntgenstrahlen absorbieren.“ Möglich geworden ist dies durch eine Kombination von Laborinfrastrukturen der BAM (Bundesanstalt für Materialprüfung und -forschung) und des HZB Labors SyncLab in Kombination mit der Synchrotronstrahlungsquelle BESSY II. BESSY II stellte für die Versuche durchstimmbare Röntgenstrahlen in einem weiten Energiebereich (200 eV bis 32 keV) zur Verfügung, die für die detaillierte Analyse der Zusammensetzung notwendig sind. Die Mikro-CT und konfokalen micro-XRF Untersuchungen waren dann mit Laboraufbauten, die Röntgenröhren als Quellen nutzen, möglich.

Eines der untersuchten Materialien ist Dentin – ein mineralisiertes Gewebe, das den größten Teil des Zahnes ausmacht. Dentin liegt unter dem Zahnschmelz und spielt eine wichtige Rolle bei der Übertragung von Reizen wie Kälte und Wärme. Die Ergebnisse der Analyse sind für die Zahnheilkunde wichtig. Denn bei Zahnfüllungen können Elemente aus dem Füllmaterial in das Dentin hineindiffundieren. „Unsere Ergebnisse ermöglichen detaillierte Studien von solchen Diffusionsprozessen“, so Leona Bauer, Doktorandin am HZB und an der TU Berlin und Erst-Autorin der Studie. Sie seien wichtig, um die Haltbarkeit und Verträglichkeit von Zahnfüllungen zu verbessern und das Risiko von Sekundärkaries und anderen Zahnproblemen zu verringern.

Neben der Untersuchung von Materialien für die Zahnheilkunde bietet die Methode Anwendungsmöglichkeiten in anderen Bereichen, in denen präzise 3D-Elementverteilungen erforderlich sind. Dazu gehören die Analyse von biologischen Geweben, die Untersuchung von Katalysatormaterialien und die Erforschung von Materialien in der Umweltwissenschaft. Die Vielseitigkeit der Messmethode könnte somit positiven Einfluss auf verschiedene Forschungsfelder haben.

HS

  • Link kopieren

Das könnte Sie auch interessieren

  • Ein Rekordjahr für unser Reallabor für BIPV
    Nachricht
    22.01.2026
    Ein Rekordjahr für unser Reallabor für BIPV
    Unsere Solarfassade in Berlin-Adlershof hat im Jahr 2025 so viel Strom erzeugt wie in keinem der vergangenen vier Betriebsjahre.
  • Kompakter Elektronenbeschleuniger zur Aufbereitung von PFAS-belastetem Wasser
    Science Highlight
    19.01.2026
    Kompakter Elektronenbeschleuniger zur Aufbereitung von PFAS-belastetem Wasser
    So genannte Ewigkeitschemikalien oder PFAS-Verbindungen sind ein zunehmendes Umweltproblem. Ein innovativer Ansatz für die Aufbereitung von Wasser und Böden in PFAS-belasteten Gebieten kommt jetzt aus der Beschleunigerphysik: Hochenergetische Elektronen können PFAS-Moleküle durch Radiolyse in unschädliche Bestandteile zerlegen. Ein am HZB entwickelter Beschleuniger auf Basis eines SHF-Photoinjektors kann den dafür nötigen Elektronenstrahl liefern, zeigt nun eine Studie in PLOS One.
  • Verdrehte Nanoröhren, die eine Geschichte erzählen
    Nachricht
    09.12.2025
    Verdrehte Nanoröhren, die eine Geschichte erzählen
    In Zusammenarbeit mit deutschen Wissenschaftlern haben EPFL-Forscher gezeigt, dass die spiralförmige Geometrie winziger, verdrillter Magnetröhren genutzt werden kann, um Daten zu übertragen, die nicht auf Elektronen, sondern auf Quasiteilchen, den Magnonen, basieren.