Neue Methode zur Absorptionskorrektur für bessere Zahnfüllungen

Das Kompositbild (aus den Daten der micro-XRF-Analyse) zeigt die Verteilung der Elemente Kalzium (Ca, weiß: Zahn) Ytterbium (Yb, magenta: Füllung) und Zink (Zn, rot: Sealer) in einem behandelten menschlichen Zahn. Dabei lässt sich erkennen, dass Zink aus dem Sealer-Material in den Zahn diffundiert.

Das Kompositbild (aus den Daten der micro-XRF-Analyse) zeigt die Verteilung der Elemente Kalzium (Ca, weiß: Zahn) Ytterbium (Yb, magenta: Füllung) und Zink (Zn, rot: Sealer) in einem behandelten menschlichen Zahn. Dabei lässt sich erkennen, dass Zink aus dem Sealer-Material in den Zahn diffundiert. © Leona Bauer (TU Berlin/HZB)

Ein Team um Dr. Ioanna Mantouvalou hat eine Methode entwickelt, um die Verteilung von chemischen Elementen in Dentalmaterialien präziser als bisher möglich darzustellen. Die konfokale mikro-Röntgenfluoreszenzanalyse (micro-XRF) liefert dreidimensional aufgelöste Elementbilder, die Verzerrungen enthalten. Sie entstehen, wenn Röntgenstrahlen Materialien unterschiedlicher Dichte und Zusammensetzung durchdringen. Mit Mikro-CT-Daten, die detaillierte 3D-Bilder der Materialstruktur liefern, und chemischen Informationen aus Röntgenabsorptionsspektroskopie (XAS) - Experimenten im Labor (BLiX, TU Berlin) und an der Synchrotronstrahlungsquelle BESSY II haben die Forschenden das Verfahren nun verbessert.

„Wir können nun genauere Messungen durchführen“, sagt Ioanna Mantouvalou: „Die Absorptionskorrektur mit Mikro-CT und XAS berücksichtigt, wie stark verschiedene Materialien Röntgenstrahlen absorbieren.“ Möglich geworden ist dies durch eine Kombination von Laborinfrastrukturen der BAM (Bundesanstalt für Materialprüfung und -forschung) und des HZB Labors SyncLab in Kombination mit der Synchrotronstrahlungsquelle BESSY II. BESSY II stellte für die Versuche durchstimmbare Röntgenstrahlen in einem weiten Energiebereich (200 eV bis 32 keV) zur Verfügung, die für die detaillierte Analyse der Zusammensetzung notwendig sind. Die Mikro-CT und konfokalen micro-XRF Untersuchungen waren dann mit Laboraufbauten, die Röntgenröhren als Quellen nutzen, möglich.

Eines der untersuchten Materialien ist Dentin – ein mineralisiertes Gewebe, das den größten Teil des Zahnes ausmacht. Dentin liegt unter dem Zahnschmelz und spielt eine wichtige Rolle bei der Übertragung von Reizen wie Kälte und Wärme. Die Ergebnisse der Analyse sind für die Zahnheilkunde wichtig. Denn bei Zahnfüllungen können Elemente aus dem Füllmaterial in das Dentin hineindiffundieren. „Unsere Ergebnisse ermöglichen detaillierte Studien von solchen Diffusionsprozessen“, so Leona Bauer, Doktorandin am HZB und an der TU Berlin und Erst-Autorin der Studie. Sie seien wichtig, um die Haltbarkeit und Verträglichkeit von Zahnfüllungen zu verbessern und das Risiko von Sekundärkaries und anderen Zahnproblemen zu verringern.

Neben der Untersuchung von Materialien für die Zahnheilkunde bietet die Methode Anwendungsmöglichkeiten in anderen Bereichen, in denen präzise 3D-Elementverteilungen erforderlich sind. Dazu gehören die Analyse von biologischen Geweben, die Untersuchung von Katalysatormaterialien und die Erforschung von Materialien in der Umweltwissenschaft. Die Vielseitigkeit der Messmethode könnte somit positiven Einfluss auf verschiedene Forschungsfelder haben.

HS

  • Link kopieren

Das könnte Sie auch interessieren

  • Ernst-Eckhard-Koch-Preis und Innovationspreis Synchrotronstrahlung 2025
    Nachricht
    05.12.2025
    Ernst-Eckhard-Koch-Preis und Innovationspreis Synchrotronstrahlung 2025
    Der Freundeskreis des HZB zeichnete auf dem 27. Nutzertreffen BESSY@HZB die Dissertation von Dr. Enggar Pramanto Wibowo (Friedrich-Alexander-Universität Erlangen-Nürnberg) aus.
    Darüber hinaus wurde der Europäische Innovationspreis Synchrotronstrahlung 2025 an Prof. Tim Salditt (Georg-August-Universität Göttingen) sowie an die Professoren Danny D. Jonigk und Maximilian Ackermann (beide, Universitätsklinikum der RWTH Aachen) verliehen. 
  • Gute Aussichten für Zinn-Perowskit-Solarzellen
    Science Highlight
    03.12.2025
    Gute Aussichten für Zinn-Perowskit-Solarzellen
    Perowskit-Solarzellen gelten weithin als die Photovoltaik-Technologie der nächsten Generation. Allerdings sind Perowskit-Halbleiter langfristig noch nicht stabil genug für den breiten kommerziellen Einsatz. Ein Grund dafür sind wandernde Ionen, die mit der Zeit dazu führen, dass das Halbleitermaterial degradiert. Ein Team des HZB und der Universität Potsdam hat nun die Ionendichte in vier verschiedenen Perowskit-Halbleitern untersucht und dabei erhebliche Unterschiede festgestellt. Eine besonders geringe Ionendichte wiesen Zinn-Perowskit-Halbleiter auf, die mit einem alternativen Lösungsmittel hergestellt wurden – hier betrug die Ionendichte nur ein Zehntel im Vergleich zu Blei-Perowskit-Halbleitern. Damit könnten Perowskite auf Zinnbasis ein besonders großes Potenzial zur Herstellung von umweltfreundlichen und besonders stabilen Solarzellen besitzen.
  • Synchrotron-strahlungsquellen: Werkzeugkästen für Quantentechnologien
    Science Highlight
    01.12.2025
    Synchrotron-strahlungsquellen: Werkzeugkästen für Quantentechnologien
    Synchrotronstrahlungsquellen erzeugen hochbrillante Lichtpulse, von Infrarot bis zu harter Röntgenstrahlung, mit denen sich tiefe Einblicke in komplexe Materialien gewinnen lassen. Ein internationales Team hat nun im Fachjournal Advanced Functional Materials einen Überblick über Synchrotronmethoden für die Weiterentwicklung von Quantentechnologien veröffentlicht: Anhand konkreter Beispiele zeigen sie, wie diese einzigartigen Werkzeuge dazu beitragen können, das Potenzial von Quantentechnologien wie z. B. Quantencomputing zu erschließen, Produktionsbarrieren zu überwinden und den Weg für zukünftige Durchbrüche zu ebnen.