Neue Methode zur Absorptionskorrektur für bessere Zahnfüllungen

Das Kompositbild (aus den Daten der micro-XRF-Analyse) zeigt die Verteilung der Elemente Kalzium (Ca, weiß: Zahn) Ytterbium (Yb, magenta: Füllung) und Zink (Zn, rot: Sealer) in einem behandelten menschlichen Zahn. Dabei lässt sich erkennen, dass Zink aus dem Sealer-Material in den Zahn diffundiert.

Das Kompositbild (aus den Daten der micro-XRF-Analyse) zeigt die Verteilung der Elemente Kalzium (Ca, weiß: Zahn) Ytterbium (Yb, magenta: Füllung) und Zink (Zn, rot: Sealer) in einem behandelten menschlichen Zahn. Dabei lässt sich erkennen, dass Zink aus dem Sealer-Material in den Zahn diffundiert. © Leona Bauer (TU Berlin/HZB)

Ein Team um Dr. Ioanna Mantouvalou hat eine Methode entwickelt, um die Verteilung von chemischen Elementen in Dentalmaterialien präziser als bisher möglich darzustellen. Die konfokale mikro-Röntgenfluoreszenzanalyse (micro-XRF) liefert dreidimensional aufgelöste Elementbilder, die Verzerrungen enthalten. Sie entstehen, wenn Röntgenstrahlen Materialien unterschiedlicher Dichte und Zusammensetzung durchdringen. Mit Mikro-CT-Daten, die detaillierte 3D-Bilder der Materialstruktur liefern, und chemischen Informationen aus Röntgenabsorptionsspektroskopie (XAS) - Experimenten im Labor (BLiX, TU Berlin) und an der Synchrotronstrahlungsquelle BESSY II haben die Forschenden das Verfahren nun verbessert.

„Wir können nun genauere Messungen durchführen“, sagt Ioanna Mantouvalou: „Die Absorptionskorrektur mit Mikro-CT und XAS berücksichtigt, wie stark verschiedene Materialien Röntgenstrahlen absorbieren.“ Möglich geworden ist dies durch eine Kombination von Laborinfrastrukturen der BAM (Bundesanstalt für Materialprüfung und -forschung) und des HZB Labors SyncLab in Kombination mit der Synchrotronstrahlungsquelle BESSY II. BESSY II stellte für die Versuche durchstimmbare Röntgenstrahlen in einem weiten Energiebereich (200 eV bis 32 keV) zur Verfügung, die für die detaillierte Analyse der Zusammensetzung notwendig sind. Die Mikro-CT und konfokalen micro-XRF Untersuchungen waren dann mit Laboraufbauten, die Röntgenröhren als Quellen nutzen, möglich.

Eines der untersuchten Materialien ist Dentin – ein mineralisiertes Gewebe, das den größten Teil des Zahnes ausmacht. Dentin liegt unter dem Zahnschmelz und spielt eine wichtige Rolle bei der Übertragung von Reizen wie Kälte und Wärme. Die Ergebnisse der Analyse sind für die Zahnheilkunde wichtig. Denn bei Zahnfüllungen können Elemente aus dem Füllmaterial in das Dentin hineindiffundieren. „Unsere Ergebnisse ermöglichen detaillierte Studien von solchen Diffusionsprozessen“, so Leona Bauer, Doktorandin am HZB und an der TU Berlin und Erst-Autorin der Studie. Sie seien wichtig, um die Haltbarkeit und Verträglichkeit von Zahnfüllungen zu verbessern und das Risiko von Sekundärkaries und anderen Zahnproblemen zu verringern.

Neben der Untersuchung von Materialien für die Zahnheilkunde bietet die Methode Anwendungsmöglichkeiten in anderen Bereichen, in denen präzise 3D-Elementverteilungen erforderlich sind. Dazu gehören die Analyse von biologischen Geweben, die Untersuchung von Katalysatormaterialien und die Erforschung von Materialien in der Umweltwissenschaft. Die Vielseitigkeit der Messmethode könnte somit positiven Einfluss auf verschiedene Forschungsfelder haben.

HS

  • Link kopieren

Das könnte Sie auch interessieren

  • Wie sich Nanokatalysatoren während der Katalyse verändern
    Science Highlight
    10.09.2025
    Wie sich Nanokatalysatoren während der Katalyse verändern
    Mit der Kombination aus Spektromikroskopie an BESSY II und mikroskopischen Analysen am NanoLab von DESY gelang es einem Team, neue Einblicke in das chemische Verhalten von Nanokatalysatoren während der Katalyse zu gewinnen. Die Nanopartikel bestanden aus einem Platin-Kern mit einer Rhodium-Schale. Diese Konfiguration ermöglicht es, strukturelle Änderungen beispielsweise in Rhodium-Platin-Katalysatoren für die Emissionskontrolle besser zu verstehen. Die Ergebnisse zeigen, dass Rhodium in der Schale unter typischen katalytischen Bedingungen teilweise ins Innere der Nanopartikel diffundieren kann. Dabei verbleibt jedoch der größte Teil an der Oberfläche und oxidiert. Dieser Prozess ist stark von der Oberflächenorientierung der Nanopartikelfacetten abhängig.
  • Metalloxide: Wie Lichtpulse Elektronen in Bewegung setzen
    Science Highlight
    08.09.2025
    Metalloxide: Wie Lichtpulse Elektronen in Bewegung setzen
    Metalloxide kommen in der Natur reichlich vor und spielen eine zentrale Rolle in Technologien wie der Photokatalyse und der Photovoltaik. In den meisten Metalloxiden ist jedoch aufgrund der starken Abstoßung zwischen Elektronen benachbarter Metallatome die elektrische Leitfähigkeit sehr gering. Ein Team am HZB hat nun zusammen mit Partnerinstitutionen gezeigt, dass Lichtimpulse diese Abstoßungskräfte vorübergehend schwächen können. Dadurch sinkt die Energie, die für die Elektronenbeweglichkeit erforderlich ist, so dass ein metallähnliches Verhalten entsteht. Diese Entdeckung bietet eine neue Möglichkeit, Materialeigenschaften mit Licht zu manipulieren, und birgt ein hohes Potenzial für effizientere lichtbasierte Bauelemente.
  • Schlüsseltechnologie für eine Zukunft ohne fossile Energieträger
    Interview
    21.08.2025
    Schlüsseltechnologie für eine Zukunft ohne fossile Energieträger
    Im Juni und Juli 2025 verbrachte der Katalyseforscher Nico Fischer Zeit am HZB. Es war sein „Sabbatical“, für einige Monate war er von seinen Pflichten als Direktor des Katalyse-Instituts in Cape Town entbunden und konnte sich nur der Forschung widmen. Mit dem HZB arbeitet sein Institut an zwei Projekten, die mit Hilfe von neuartigen Katalysatortechnologien umweltfreundliche Alternativen erschließen sollen. Mit ihm sprach Antonia Rötger.