Wertstoffe aus Abfall: Auf die richtigen Elektrolyte kommt es an

Die Hydroxylgruppen des Glycerins werden von den Bi <sup>3+</sup>-Ionen auf der Oberfl&auml;che der BiVO<sub>4</sub>-Photoanode angezogen. Der Elektrolyt spielt eine entscheidende Rolle bei der Vermittlung dieser Wechselwirkungen.

Die Hydroxylgruppen des Glycerins werden von den Bi 3+-Ionen auf der Oberfläche der BiVO4-Photoanode angezogen. Der Elektrolyt spielt eine entscheidende Rolle bei der Vermittlung dieser Wechselwirkungen. © HZB

Stellt man aus Biomasse Biodiesel her, fällt als Nebenprodukt Glycerin an. Bislang wird dieses Nebenprodukt jedoch wenig genutzt, obwohl es durch Oxidation in photoelektrochemischen Reaktoren (PEC) zu wertvolleren Chemikalien verarbeitet werden könnte. Der Grund dafür: geringe Effizienz und Selektivität. Nun hat ein Team um Dr. Marco Favaro vom Institut für Solare Brennstoffe am HZB den Einfluss der Elektrolyte auf die Effizienz der Glycerin-Oxidations-Reaktion in PEC-Reaktoren untersucht und Ergebnisse erhalten, die dabei helfen, effizientere und umweltfreundlichere Produktionsverfahren zu entwickeln.

 

Im Jahr 2023 wurden in der Europäischen Union* rund 16 Milliarden Liter Biodiesel und HVO-Diesel aus Mais, Raps oder aus Abfallstoffen der landwirtschaftlichen Produktion hergestellt. Ein Nebenprodukt der Biodieselproduktion ist Glycerin, aus dem sich über eine Glycerin-Oxidations-Reaktion (GOR) wertvolle Chemikalien wie Dihydroxyaceton, Ameisensäure, Glyceraldehyd und Glycolaldehyd herstellen lassen. Glycerin kann dafür in photoelektrochemischen (PEC)-Reaktoren oxidiert werden, die derzeit insbesondere für die Produktion von grünem Wasserstoff entwickelt werden. Allerdings wird dieser Weg derzeit kaum genutzt, weil die Effizienz zu wünschen lässt. Das ist schade, denn die Oxidation von Glycerin benötigt viel weniger Energie als die Wasserstofferzeugung durch Wasserspaltung, und erzeugt dabei wertvolle Chemikalien. Dadurch ließe sich die Wirtschaftlichkeit des PEC-Power-to-X-Verfahrens erheblich steigern.

Zahlreiche Studien haben bereits die Rolle der Photokatalysatoren in PEC-Elektrolyseuren untersucht, die Rolle des Elektrolyten blieb dabei unter dem Radar. Ein Team unter der Leitung von Dr. Marco Favaro am Institut für Solare Brennstoffe hat nun den Einfluss der Elektrolytzusammensetzung auf die Effizienz und Stabilität der Glycerin-Oxidation systematisch analysiert.

Unterschiedliche Elektrolyte getestet

Das Team verwendete eine PEC-Zelle mit Photoanoden aus nanoporösem Bismutvanadat (BiVO4) und testete saure Elektrolyte (pH = 2), darunter Natriumnitrat (NaNO3), Natriumperchlorat (NaClO4), Natriumsulfat (Na2SO4), Kaliumsulfat (K2SO4) und Kaliumphosphat (KPi). „Unsere Ergebnisse zeigten, dass BiVO4-Photoanoden in Natriumnitrat am besten funktionieren und das üblicherweise verwendete Natriumsulfat in Bezug auf Photostrom, Stabilität und Produktionsraten von hochwertigen Glycerin-Oxidationsreaktionsprodukten übertreffen", fasst Favaro zusammen.

Deutlicher Einfluss, auch bei anderen Photoanoden

Das Team untersuchte auch die Gründe für diesen Leistungsunterschied: Ihre Hypothese ist, dass die Größe der Ionen, ihre unterschiedlichen Ein- und Aussalzungsfähigkeiten (Hofmeister-Reihe) und ihre unterschiedliche pH-Pufferkapazität eine Rolle spielen. „Tatsächlich hat die Zusammensetzung des Elektrolyten einen überraschend deutlichen Einfluss auf die Effizienz der Glycerin-Oxidation, und wir konnten diesen Trend sowohl bei Bismut-Vanadat- als auch bei polykristallinen Platinanoden beobachten ", sagt Doktorand Heejung Kong. Dies legt die Schlussfolgerung nahe, dass sich dieser Befunde auch auf andere Materialien und Prozesse übertragen lassen.

"Unsere Forschung könnte dazu beitragen, Nebenprodukte der Biodieselproduktion effizienter in wertvolle Chemikalien umzuwandeln. Damit würden Abfallstoffe genutzt und die Auswirkungen auf die Umwelt minimiert", sagt Favaro.

Hinweis: Diese Arbeit wurde vom Europäischen Innovationsrat (EIC) im Rahmen des OHPERA-Projekts (Finanzhilfevereinbarung 101071010) unterstützt.

 

*Quelle: https://de.statista.com/statistik/daten/studie/1179499/umfrage/produktion-von-biodiesel-und-erneuerbarem-diesel-eu/=

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Gute Aussichten für Zinn-Perowskit-Solarzellen
    Science Highlight
    03.12.2025
    Gute Aussichten für Zinn-Perowskit-Solarzellen
    Perowskit-Solarzellen gelten weithin als die Photovoltaik-Technologie der nächsten Generation. Allerdings sind Perowskit-Halbleiter langfristig noch nicht stabil genug für den breiten kommerziellen Einsatz. Ein Grund dafür sind wandernde Ionen, die mit der Zeit dazu führen, dass das Halbleitermaterial degradiert. Ein Team des HZB und der Universität Potsdam hat nun die Ionendichte in vier verschiedenen Perowskit-Halbleitern untersucht und dabei erhebliche Unterschiede festgestellt. Eine besonders geringe Ionendichte wiesen Zinn-Perowskit-Halbleiter auf, die mit einem alternativen Lösungsmittel hergestellt wurden – hier betrug die Ionendichte nur ein Zehntel im Vergleich zu Blei-Perowskit-Halbleitern. Damit könnten Perowskite auf Zinnbasis ein besonders großes Potenzial zur Herstellung von umweltfreundlichen und besonders stabilen Solarzellen besitzen.
  • Synchrotron-strahlungsquellen: Werkzeugkästen für Quantentechnologien
    Science Highlight
    01.12.2025
    Synchrotron-strahlungsquellen: Werkzeugkästen für Quantentechnologien
    Synchrotronstrahlungsquellen erzeugen hochbrillante Lichtpulse, von Infrarot bis zu harter Röntgenstrahlung, mit denen sich tiefe Einblicke in komplexe Materialien gewinnen lassen. Ein internationales Team hat nun im Fachjournal Advanced Functional Materials einen Überblick über Synchrotronmethoden für die Weiterentwicklung von Quantentechnologien veröffentlicht: Anhand konkreter Beispiele zeigen sie, wie diese einzigartigen Werkzeuge dazu beitragen können, das Potenzial von Quantentechnologien wie z. B. Quantencomputing zu erschließen, Produktionsbarrieren zu überwinden und den Weg für zukünftige Durchbrüche zu ebnen.
  • Neue Katalysatormaterialien auf Basis von Torf für Brennstoffzellen
    Science Highlight
    25.11.2025
    Neue Katalysatormaterialien auf Basis von Torf für Brennstoffzellen
    Eisen-Stickstoff-Kohlenstoff-Katalysatoren haben das Potenzial, teure Platinkatalysatoren in Brennstoffzellen zu ersetzen. Dies zeigt eine Studie aus Helmholtz-Zentrum Berlin (HZB), der Physikalisch-Technischen Bundesanstalt (PTB) und der Universitäten in Tartu und Tallinn, Estland. An BESSY II beobachtete das Team, wie sich komplexe Mikrostrukturen in den Proben bilden. Anschließend analysierten sie, welche Strukturparameter für die Förderung der bevorzugten elektrochemischen Reaktionen besonders wichtig waren. Der Rohstoff für solche Katalysatoren ist gut zersetzter Torf.