Alle BESSY II-Instrumente wieder am Netz

© HZB / D. Laubner

Vor dreizehn Monaten wurde das HZB Ziel eines kriminellen Cyberangriffs, durch den auch die Synchrotronstrahlungsquelle BESSY II und die Instrumente in der Experimentierhalle außer Betrieb genommen wurden. BESSY II lief bereits nach drei Wochen wieder an und die Instrumente wurden sukzessive in Betrieb genommen.
Nun kann das HZB eine gute Nachricht berichten: Alle Experimentierstationen sind wieder in die neuen IT-Netzwerke eingebunden und können Daten erfassen.

In einer Task-Force, geleitet von Andreas Jankowiak und Jens Viefhaus gelang es einem Team um Ruslan Ovsyannikov, eine neue IT-Infrastruktur und eine widerstandsfähige Netzwerkarchitektur zu implementieren. Dieses Projekt soll nun am HZB fest etabliert und verstetigt werden. Das Ziel ist es, die volle Funktionalität des BESSY-II-Benutzerservices zu erreichen, neue Möglichkeiten für Remote-Experimente und ein besseres Datenmanagement aufzubauen.

Das Projekt profitiert auch von den Erfolgen einer internationalen Kooperation, die eine neue Grundlage für das Datenmanagement von Experimenten an Lichtquellen und in Laboren mit dem Namen Bluesky entwickelt. Mit Bluesky wird ein neuartiges Experimentaldaten-Erfassungssystem bei BESSY II durchgängig eingeführt (unter der Federführung der HZB-Mitarbeiter William Smith und Simone Vadilonga). Es ist bereits an mehreren BESSY-Strahlrohren in Betrieb. Die Einführung von Bluesky bei BESSY II ist ein Meilenstein und wird in der Fachcommunity viel beachtet. Mehrere europäische Beschleuniger sind an dem neuartigen Datensteuerungssystem interessiert.

Um die zukünftigen Herausforderungen an das Datenmanagement und die IT-Strukturen von wissenschaftlichen Großforschungsanlagen umsetzen zu können, beteiligt sich das HZB zudem am Helmholtz-Projekt ROCK-IT (Remote, Operando Controlled, Knowledge-driven, and IT-based). Ziel ist es, die notwendigen Werkzeuge für die Automatisierung und den Fernzugriff auf In-situ- und Operando-Experimente an Synchrotronstrahlungsquellen zu entwickeln. Der vereinfachte Zugriff auf die Experimente ist ein zentrales Anliegen der Nutzerschaft.

 

Roland Müller (red)

  • Link kopieren

Das könnte Sie auch interessieren

  • Synchrotronstrahlungsquellen: Werkzeugkästen für Quantentechnologien
    Science Highlight
    01.12.2025
    Synchrotronstrahlungsquellen: Werkzeugkästen für Quantentechnologien
    Synchrotronstrahlungsquellen erzeugen hochbrillante Lichtpulse, von Infrarot bis zu harter Röntgenstrahlung, mit denen sich tiefe Einblicke in komplexe Materialien gewinnen lassen. Ein internationales Team hat nun im Fachjournal Advanced Functional Materials einen Überblick über Synchrotronmethoden für die Weiterentwicklung von Quantentechnologien veröffentlicht: Anhand konkreter Beispiele zeigen sie, wie diese einzigartigen Werkzeuge dazu beitragen können, das Potenzial von Quantentechnologien wie z. B. Quantencomputing zu erschließen, Produktionsbarrieren zu überwinden und den Weg für zukünftige Durchbrüche zu ebnen.
  • Neue Katalysatormaterialien auf Basis von Torf für Brennstoffzellen
    Science Highlight
    25.11.2025
    Neue Katalysatormaterialien auf Basis von Torf für Brennstoffzellen
    Eisen-Stickstoff-Kohlenstoff-Katalysatoren haben das Potenzial, teure Platinkatalysatoren in Brennstoffzellen zu ersetzen. Dies zeigt eine Studie aus Helmholtz-Zentrum Berlin (HZB), der Physikalisch-Technischen Bundesanstalt (PTB) und der Universitäten in Tartu und Tallinn, Estland. An BESSY II beobachtete das Team, wie sich komplexe Mikrostrukturen in den Proben bilden. Anschließend analysierten sie, welche Strukturparameter für die Förderung der bevorzugten elektrochemischen Reaktionen besonders wichtig waren. Der Rohstoff für solche Katalysatoren ist gut zersetzter Torf.
  • Helmholtz-Nachwuchsgruppe zu Magnonen
    Nachricht
    24.11.2025
    Helmholtz-Nachwuchsgruppe zu Magnonen
    Dr. Hebatalla Elnaggar baut am HZB eine neue Helmholtz-Nachwuchsgruppe auf. An BESSY II will die Materialforscherin sogenannte Magnonen in magnetischen Perowskit-Dünnschichten untersuchen. Sie hat sich zum Ziel gesetzt, mit ihrer Forschung Grundlagen für eine zukünftige Terahertz-Magnon-Technologie zu legen: Magnonische Bauelemente im Terahertz-Bereich könnten Daten mit einem Bruchteil der Energie verarbeiten, die moderne Halbleiterbauelemente benötigen, und das mit bis zu tausendfacher Geschwindigkeit.

    Dr. Hebatalla Elnaggar will an BESSY II magnetische Perowskit-Dünnschichten untersuchen und damit die Grundlagen für eine künftige Magnonen-Technologie schaffen.