BESSY II: Heterostrukturen für die Spintronik

Symbolische Illustration einer Graphenschicht auf einem Mikrochip. Graphen könnte in Kombination mit einer Schwermetall-Dünnschicht und ferromagnetischen Monolagen spintronische Bauelemente ermöglichen.

Symbolische Illustration einer Graphenschicht auf einem Mikrochip. Graphen könnte in Kombination mit einer Schwermetall-Dünnschicht und ferromagnetischen Monolagen spintronische Bauelemente ermöglichen. © Dall-E/arö

Spintronische Bauelemente arbeiten mit magnetischen Strukturen, die durch quantenphysikalische Wechselwirkungen hervorgerufen werden. Nun hat eine Spanisch-Deutsche Kooperation Heterostrukturen aus Graphen-Kobalt-Iridium an BESSY II untersucht. Die Ergebnisse belegen, wie sich in diesen Heterostrukturen zwei erwünschte quantenphysikalische Effekte gegenseitig verstärken. Dies könnte zu neuen spintronischen Bauelementen aus solchen Heterostrukturen führen.

 

Die Spintronik nutzt die Spins von Elektronen, um logische Operationen durchzuführen oder Informationen zu speichern. Spintronische Bauelemente könnten im Idealfall schneller und energieeffizienter arbeiten als die gängigen Halbleiter-Bauelemente. Allerdings ist es noch immer schwierig, Spin-Strukturen in Materialien gezielt zu erzeugen und zu manipulieren.

Graphen für die Spintronik

Als interessanter Kandidat für spintronische Anwendungen gilt Graphen, eine zweidimensional vernetzte Bienenwabenstruktur aus Kohlenstoffatomen. Graphen wird üblicherweise auf eine Dünnschicht aus einem Schwermetall aufgetragen. An der Grenzschicht zwischen Graphen und Schwermetall entwickelt sich eine starke Spin-Bahn-Kopplung, was unterschiedliche Quanteneffekte ermöglicht, darunter auch eine Spin-Bahn-Aufspaltung der Energieniveaus (Rashba-Effekt) und eine „Verkantung“ bei der Ausrichtung der Spins (Dzyaloshinskii-Moriya-Wechselwirkung). Speziell dieser letzte Effekt wird benötigt, um wirbelartige Spin-Strukturen zu stabilisieren, so genannte Skyrmionen, die für die Spintronik besonders geeignet sind.

Plus Monolagen aus Kobalt

Nun aber hat ein Spanisch-Deutsches Team gezeigt, dass sich diese Effekte deutlich verstärken, wenn zwischen Graphen und Schwermetall-Substrat (hier: Iridium) noch einige Monolagen aus dem ferromagnetischen Element Kobalt eingefügt werden. Die Proben wurden auf isolierenden Substraten gezüchtet, was eine notwendige Voraussetzung für die Implementierung multifunktionaler Spintronik-Bauelemente ist, die diese Effekte nutzen.

Wechselwirkung der Quanteneffekte beobachtet

„Wir haben an BESSY II die elektronischen Spektren an den Grenzflächen zwischen Graphen, Kobalt und Iridium genau analysiert“, sagt Dr. Jaime Sanchez-Barriga, Physiker am HZB. Die wichtigste Erkenntnis: Wider Erwarten wechselwirkt das Graphen nicht nur mit dem Kobalt, sondern auch durch das Kobalt hindurch mit dem Iridium. „Die Wechselwirkung zwischen Graphen und dem Schwermetall Iridium wird durch die ferromagnetische Kobalt-Schicht vermittelt“, erklärt Sánchez-Barriga. Dabei verstärkt die ferromagnetische Schicht die Aufspaltung der Energieniveaus. „Wir können den Effekt der Spin-Verkantung durch die Anzahl der Kobalt-Monolagen beeinflussen, optimal sind drei Monolagen“, sagt Sánchez-Barriga.

Dieses Ergebnis wird nicht nur durch die Messergebnisse gestützt, sondern auch durch neue Berechnungen im Rahmen der Dichtefunktionaltheorie, die am Forschungszentrum Jülich durchgeführt wurden. Dass sich beide Quanteneffekte gegenseitig beeinflussen und verstärken, ist neu und unerwartet.

SPIN-ARPES an BESSY II

„Diese neuen Erkenntnisse konnten wir nur deshalb gewinnen, weil an BESSY II extrem hochauflösende und empfindliche Instrumente zur Verfügung stehen, um Photoemissionsspektren mit Spin-Auflösung zu messen (SPIN-ARPES)“, betont Prof. Oliver Rader, der die Abteilung Spin und Topologie in Quantenmaterialien am HZB leitet. „Dies führt zu der glücklichen Situation, dass wir die vermutete Ursache für die Verkantung der Spins, d. h. die Spin-Bahn-Aufspaltung vom Rashba-Typ, sehr genau bestimmen können, wahrscheinlich sogar genauer als die Spin-Verkantung selbst“. Instrumente mit diesen Möglichkeiten gibt es weltweit nur an sehr wenigen Einrichtungen.

Die Ergebnisse zeigen, dass Heterostrukturen auf Basis von Graphen ein großes Potential für die nächste Generation von spintronischen Bauelementen besitzen.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Langzeit-Stabilität von Perowskit-Solarzellen deutlich gesteigert
    Science Highlight
    07.11.2025
    Langzeit-Stabilität von Perowskit-Solarzellen deutlich gesteigert
    Perowskit-Solarzellen sind kostengünstig in der Herstellung und liefern viel Leistung pro Fläche. Allerdings sind sie bisher noch nicht stabil genug für den Langzeit-Einsatz. Nun hat ein internationales Team unter der Leitung von Prof. Dr. Antonio Abate durch eine neuartige Beschichtung der Grenzfläche zwischen Perowskitschicht und dem Top-Kontakt die Stabilität drastisch erhöht. Dabei stieg der Wirkungsgrad auf knapp 27 Prozent, was dem aktuellen state-of-the-art entspricht. Dieser hohe Wirkungsgrad nahm auch nach 1.200 Stunden im Dauerbetrieb nicht ab. An der Studie waren Forschungsteams aus China, Italien, der Schweiz und Deutschland beteiligt. Sie wurde in Nature Photonics veröffentlicht.
  • Energie von Ladungsträgerpaaren in Kuprat-Verbindungen
    Science Highlight
    05.11.2025
    Energie von Ladungsträgerpaaren in Kuprat-Verbindungen
    Noch immer ist die Hochtemperatursupraleitung nicht vollständig verstanden. Nun hat ein internationales Forschungsteam an BESSY II die Energie von Ladungsträgerpaaren in undotiertem La₂CuO₄ vermessen. Die Messungen zeigten, dass die Wechselwirkungsenergien in den potenziell supraleitenden Kupferoxid-Schichten deutlich geringer sind als in den isolierenden Lanthanoxid-Schichten. Die Ergebnisse tragen zum besseren Verständnis der Hochtemperatur-Supraleitung bei und könnten auch für die Erforschung anderer funktionaler Materialien relevant sein.
  • Elektrokatalyse mit doppeltem Nutzen – ein Überblick
    Science Highlight
    31.10.2025
    Elektrokatalyse mit doppeltem Nutzen – ein Überblick
    Hybride Elektrokatalysatoren können beispielsweise gleichzeitig grünen Wasserstoff und wertvolle organische Verbindungen produzieren. Dies verspricht wirtschaftlich rentable Anwendungen. Die komplexen katalytischen Reaktionen, die bei der Herstellung organischer Verbindungen ablaufen, sind jedoch noch nicht vollständig verstanden. Moderne Röntgenmethoden an Synchrotronquellen wie BESSY II ermöglichen es, Katalysatormaterialien und die an ihren Oberflächen ablaufenden Reaktionen in Echtzeit, in situ und unter realen Betriebsbedingungen zu analysieren. Dies liefert Erkenntnisse, die für eine gezielte Optimierung genutzt werden können. Ein Team hat nun in Nature Reviews Chemistry einen Überblick über den aktuellen Wissensstand veröffentlicht.