Wasserstoff: Durchbruch bei Alkalischen Membran-Elektrolyseuren

<p class="x_MsoNormal">Die AEM Wasserelektrolyseur-Zelle arbeitet mit einer neu entwickelten Membranelektrodeneinheit (MEA), die mit einem schichtstrukturierten Nickel-basierten Anodenkatalysator direkt beschichtet ist. Seine molekulare Wirkungsweise wurde aufgekl&auml;rt, und die AEM-Zelle hat sich als nahezu ebenso leistungsstark wie eine konventionelle PEM-Zelle mit Iridium-Katalysator erwiesen.

Die AEM Wasserelektrolyseur-Zelle arbeitet mit einer neu entwickelten Membranelektrodeneinheit (MEA), die mit einem schichtstrukturierten Nickel-basierten Anodenkatalysator direkt beschichtet ist. Seine molekulare Wirkungsweise wurde aufgeklärt, und die AEM-Zelle hat sich als nahezu ebenso leistungsstark wie eine konventionelle PEM-Zelle mit Iridium-Katalysator erwiesen. © Flo Force Fotografie, Hahn-Schickard & IMTEK Universität Freiburg

<p class="x_MsoNormal">Die katalytisch inaktive alpha-Phase (links) wandelt sich durch einen Phasen&uuml;bergang zur hochaktiven gamma-Phase (rechts) um. Die chemischen Details dieses Phasen&uuml;bergangs konnte das Team mit R&ouml;ntgenexperimenten an der Endstation LIXEdrom des BESSY II sowie elektrochemischen und computergest&uuml;tzten Analysen im Detail aufkl&auml;ren.&nbsp;

Die katalytisch inaktive alpha-Phase (links) wandelt sich durch einen Phasenübergang zur hochaktiven gamma-Phase (rechts) um. Die chemischen Details dieses Phasenübergangs konnte das Team mit Röntgenexperimenten an der Endstation LIXEdrom des BESSY II sowie elektrochemischen und computergestützten Analysen im Detail aufklären.  © Hanna Trzesniowski

Einem Team aus Technischer Universität Berlin, Helmholtz-Zentrum Berlin, Institut für Mikrosystemtechnik der Universität Freiburg (IMTEK) und Siemens Energy ist es gelungen, eine hocheffiziente alkalische Membran-Elektrolyse Zelle erstmals im Labormaßstab in Betrieb zu nehmen. Das Besondere: Der Anodenkatalysator besteht dabei aus preisgünstigen Nickelverbindungen und nicht aus begrenzt verfügbaren Edelmetallen. An BESSY II konnte das Team die katalytischen Prozesse durch operando Messungen im Detail darstellen, ein Theorie Team (USA, Singapur) lieferte eine konsistente molekulare Beschreibung. In Freiburg wurden mit einem neuen Beschichtungsverfahren Kleinzellen gebaut und im Betrieb getestet. Die Ergebnisse sind im renommierten Fachjournal Nature Catalysis publiziert.

Wasserstoff soll im Energiesystem der Zukunft eine große Rolle spielen, als Energiespeicher, Brennstoff und wertvoller Rohstoff für die chemische Industrie. Denn Wasserstoff lässt sich nahezu klimaneutral durch Elektrolyse von Wasser erzeugen, sofern diese mit Strom aus erneuerbaren Quellen betrieben wird. Der Hochlauf der grünen Wasserstoffwirtschaft wird aktuell maßgeblich von zwei Systemen bestimmt: der protonenleitenden Membranelektrolyse (PEM) und der klassischen alkalischen Elektrolyse. AEM-Elektrolyseure kombinieren die Vorteile beider Systeme und benötigen beispielsweise keine seltenen Edelmetalle wie Iridium.

Alkalische Membran (AEM) Elektrolyseure ohne Iridium

Nun haben Forschungsteams aus TU Berlin und HZB gemeinsam mit dem Institut für Mikrosystemtechnik (IMTEK) der Uni Freiburg und Siemens Energy erstmals eine alkalische Membran-Elektrolyseurzelle im Labormaßstab vorgestellt, die eine hohe Effizienz bei der Produktion von Wasserstoff aufweist. Statt auf Iridium setzten sie auf Nickel-Doppelhydroxidverbindungen mit Eisen, Kobalt oder Mangan und entwickelten ein Verfahren, um eine alkalische Ionenaustauschmembran damit zu beschichten.

Einblick in molekulare Prozesse während der Elektrolyse an BESSY II

Während der Elektrolyse in der Zelle konnten sie operando-Messungen an der Berliner Röntgenquelle BESSY II durchführen. Ein Theorie-Team aus Singapur und den USA half dabei, die experimentellen Daten zu interpretieren. „Dadurch gelang es uns, die relevanten katalytisch-chemischen Prozesse an der katalysatorbeschichteten Membran zu verstehen und zu beschreiben, insbesondere den Phasenübergang von einer katalytisch inaktiven Alpha-Phase zur hochaktiven Gamma-Phase und die Rolle, welche die verschiedenen O-Liganden und Ni4+-Zentren bei der Katalyse spielen“, erklärt Prof. Peter Strasser, TU Berlin. „Erst diese Gamma-Phase kann unseren Katalysator konkurrenzfähig mit den aktuellen state-of-the-art Katalysatoren aus Iridium machen. Unsere Arbeit zeigt wichtige Gemeinsamkeiten zu Iridium im katalytischen Mechanismus, aber auch völlig überraschende molekulare Unterschiede."

Die Untersuchung hat damit unser Verständnis der fundamentalen Katalyse Mechanismen der neuen nickelbasierten Elektroden-Materialien signifikant erweitert. Außerdem verspricht das neu entwickelte Beschichtungsverfahren der Membranelektrode eine sehr gute Skalierbarkeit. Eine erste vollfunktionsfähigen Kleinzellen wurde am IMTEK bereits getestet. Damit legen die Arbeiten die Grundlage für eine weitergehende industrielle Evaluierung und demonstrieren, dass auch ein AEM-Wasserelektrolyseur hocheffizient sein kann.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Susanne Nies in EU-Beratergruppe zu Green Deal berufen
    Nachricht
    12.11.2025
    Susanne Nies in EU-Beratergruppe zu Green Deal berufen
    Dr. Susanne Nies leitet am HZB das Projekt Green Deal Ukraina, das den Aufbau eines nachhaltigen Energiesystems in der Ukraine unterstützt. Die Energieexpertin wurde nun auch in die wissenschaftliche Beratergruppe der Europäischen Kommission berufen, um im Zusammenhang mit der Netto-Null-Zielsetzung (DG GROW) regulatorische Belastungen aufzuzeigen und dazu zu beraten.
  • Die Zukunft der Korallen – Was Röntgenuntersuchungen zeigen können
    Interview
    12.11.2025
    Die Zukunft der Korallen – Was Röntgenuntersuchungen zeigen können
    In diesem Sommer war es in allen Medien. Angetrieben durch die Klimakrise haben nun auch die Ozeane einen kritischen Punkt überschritten, sie versauern immer mehr. Meeresschnecken zeigen bereits erste Schäden, aber die zunehmende Versauerung könnte auch die kalkhaltigen Skelettstrukturen von Korallen beeinträchtigen. Dabei leiden Korallen außerdem unter marinen Hitzewellen und Verschmutzung, die weltweit zur Korallenbleiche und zum Absterben ganzer Riffe führen. Wie genau wirkt sich die Versauerung auf die Skelettbildung aus?

    Die Meeresbiologin Prof. Dr. Tali Mass von der Universität Haifa, Israel, ist Expertin für Steinkorallen. Zusammen mit Prof. Dr. Paul Zaslansky, Experte für Röntgenbildgebung an der Charité Berlin, untersuchte sie an BESSY II die Skelettbildung bei Babykorallen, die unter verschiedenen pH-Bedingungen aufgezogen wurden. Antonia Rötger befragte die beiden Experten online zu ihrer aktuellen Studie und der Zukunft der Korallenriffe. 

  • Langzeit-Stabilität von Perowskit-Solarzellen deutlich gesteigert
    Science Highlight
    07.11.2025
    Langzeit-Stabilität von Perowskit-Solarzellen deutlich gesteigert
    Perowskit-Solarzellen sind kostengünstig in der Herstellung und liefern viel Leistung pro Fläche. Allerdings sind sie bisher noch nicht stabil genug für den Langzeit-Einsatz. Nun hat ein internationales Team unter der Leitung von Prof. Dr. Antonio Abate durch eine neuartige Beschichtung der Grenzfläche zwischen Perowskitschicht und dem Top-Kontakt die Stabilität drastisch erhöht. Dabei stieg der Wirkungsgrad auf knapp 27 Prozent, was dem aktuellen state-of-the-art entspricht. Dieser hohe Wirkungsgrad nahm auch nach 1.200 Stunden im Dauerbetrieb nicht ab. An der Studie waren Forschungsteams aus China, Italien, der Schweiz und Deutschland beteiligt. Sie wurde in Nature Photonics veröffentlicht.