BESSY II: Neues Verfahren für bessere Thermokunststoffe

In der Nano-IR-Bildgebung sind die Schichtstrukturen der reinen PVDF/PLLA-Mischung (links) und mit dem SAD-Zusatz (rechts) deutlich unterscheidbar. Die hellen und dunklen Farben entsprechen den PLLA- bzw. PVDF-Phasen. Bei Zugabe von SAD werden die Domänengrößen der beiden Phasen reduziert.

In der Nano-IR-Bildgebung sind die Schichtstrukturen der reinen PVDF/PLLA-Mischung (links) und mit dem SAD-Zusatz (rechts) deutlich unterscheidbar. Die hellen und dunklen Farben entsprechen den PLLA- bzw. PVDF-Phasen. Bei Zugabe von SAD werden die Domänengrößen der beiden Phasen reduziert. © TU Eindhoven/HZB

Während der Messkampagne an BESSY II: Claudia Hanegraaf, Paul van Heugten und Hamid Ahmadi, TU Eindhoven, NL (v.l.n.r.).

Während der Messkampagne an BESSY II: Claudia Hanegraaf, Paul van Heugten und Hamid Ahmadi, TU Eindhoven, NL (v.l.n.r.). © TU Eindhoven/HZB

Umweltfreundliche Thermoplaste aus nachwachsenden Rohstoffen lassen sich nach Gebrauch recyclen. Ihre Belastbarkeit lässt sich verbessern, indem man sie mit anderen Thermoplasten mischt. Um optimale Eigenschaften zu erzielen, kommt es jedoch auf die Grenzflächen in diesen Mischungen an. Ein Team der Technischen Universität Eindhoven in den Niederlanden hat nun an BESSY II untersucht, wie sich mit einem neuen Verfahren aus zwei Grundmaterialien thermoplastische „Blends“ mit hoher Grenzflächenfestigkeit herstellen lassen: Aufnahmen an der neuen Nanostation der IRIS-Beamline zeigten, dass sich dabei nanokristalline Schichten bilden, die die Leistungsfähigkeit des Materials erhöhen.

Biobasierte Thermoplaste gelten als umweltfreundlich. Sie werden nicht aus erdölbasierten Rohstoffen gewonnen, sondern aus nachwachsenden pflanzlichen Materialien und lassen sich wie Standardthermoplaste recyceln. Ein thermoplastisches Basismaterial ist Polymilchsäure (PLA), die aus Zuckerrohr oder Mais hergestellt werden kann. Weltweit arbeiten viele Forschungsgruppen daran, die Eigenschaften von PLA-basierten Kunststoffen zu optimieren, indem sie sie beispielsweise mit anderen thermoplastischen Basismaterialien mischen. Dies ist jedoch eine echte Herausforderung.

Neues Verfahren für bessere Mischung

Nun zeigt ein Team der TU Eindhoven um Prof. Ruth Cardinaels, wie sich PLA erfolgreich mit einem anderen Thermoplast mischen lässt. Sie entwickelten ein Verfahren, bei dem während der Herstellung bestimmte PLA-basierte Ko-Polymere (z. B. SAD) gebildet werden. Diese erleichtern die die Vermischung der beiden Grundstoffe, indem sie an den Grenzflächen zwischen den verschiedenen Polymerphasen besonders stabile (stereo)-kristalline Schichten bilden (ICIC-Strategie).

Experimente an der IRIS-Beamline von BESSY II

An BESSY II haben sie nun herausgefunden, welche Prozesse dafür sorgen, dass die mechanischen Eigenschaften des gemischten Thermoplasten deutlich besser sind. Dazu untersuchten sie an der IRIS-Beamline von BESSY II reine 50%-Mischungen der Thermoplaste PLA und Polyvinylidenfluorid (PVDF) sowie Proben mit den PLA-basierten Copolymeren.

KrIstallisation ist entscheidend

Mit Hilfe der Infrarotspektroskopie an der IRIS-Beamline konnte der Doktorand Hamid Ahmadi die Bildung des PLA-basierten Copolymers SAD nachweisen. Weitere Röntgenmessungen zeigten, wie sich die Bildung von SAD auf das Kristallisationsverhalten auswirkt. Die neuen Möglichkeiten der Nano-Bildgebung und -Spektroskopie an der IRIS-Beamline ermöglichen eine chemische Visualisierung und Identifizierung von Probenbereichen, die nur 30 nm groß sind. Diese Präzision war entscheidend für die Feststellung, dass sich die Stereokomplexkristalle ausschließlich an der Grenzfläche befinden. Infrarot-Nanoskopie-Bilder zeigten eine 200–300 nm dicke Schicht aus Stereokomplexkristallen an den Grenzflächen.

Grund für bessere Stabilität

Die Bildung von Stereokomplexkristallen an den Grenzflächen erhöht die Stabilität und Kristallisationstemperatur. Die Keimbildung an der Grenzfläche beschleunigt den gesamten Kristallisationsprozess innerhalb der PLLA/PVDF-Mischung. Außerdem verbessert die kristalline Grenzschicht die Übertragung mechanischer Spannungen zwischen den Phasen und somit die Zugeigenschaften; die Bruchdehnung steigt sogar um bis zu 250 %.

„Durch die Aufklärung der Lage und Verteilung der kristallinen Schicht in unseren Proben konnten wir das Mischverfahren viel besser verstehen“, sagt Hamid Ahmadi. ‚Durch die Entwicklung einer neuen Strategie haben wir den Weg für die Entwicklung von Hochleistungspolymermischungen geebnet‘, fügt Ruth Cardinaels hinzu.

 

Hinweis: Die IRIS-Beamline bei BESSY II wurde in 2024 um eine Nanomikroskopie erweitert, die es ermöglicht, Bilder von Probenbereichen von ~30 nm zu erstellen und IR-Spektroskopie durchzuführen. Mehr dazu lesen Sie hier: Meldung zur IRIS-Beamline vom 25.04.2024

 

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Grüne Herstellung von Hybridmaterialien als hochempfindliche Röntgendetektoren
    Science Highlight
    08.05.2025
    Grüne Herstellung von Hybridmaterialien als hochempfindliche Röntgendetektoren
    Neue organisch-anorganische Hybridmaterialien auf Basis von Wismut sind hervorragend als Röntgendetektoren geeignet, sie sind deutlich empfindlicher als handelsübliche Röntgendetektoren und langzeitstabil. Darüber hinaus können sie ohne Lösungsmittel durch Kugelmahlen hergestellt werden, einem umweltfreundlichen Syntheseverfahren, das auch in der Industrie genutzt wird. Empfindlichere Detektoren würden die Strahlenbelastung bei Röntgenuntersuchungen erheblich reduzieren.

  • Energiespeicher: BAM, HZB und HU Berlin planen gemeinsames Berlin Battery Lab
    Nachricht
    07.05.2025
    Energiespeicher: BAM, HZB und HU Berlin planen gemeinsames Berlin Battery Lab
    Die Bundesanstalt für Materialforschung und -prüfung (BAM), das Helmholtz-Zentrum Berlin (HZB) und die Humboldt-Universität zu Berlin (HU Berlin) haben ein Memorandum of Understanding (MoU) zur Gründung des Berlin Battery Lab unterzeichnet. Das Labor wird die Expertise der drei Institutionen bündeln, um die Entwicklung nachhaltiger Batterietechnologien voranzutreiben. Die gemeinsame Forschungsinfrastruktur soll auch der Industrie für wegweisende Projekte in diesem Bereich offenstehen.
  • BESSY II: Einblick in ultraschnelle Spinprozesse mit Femtoslicing
    Science Highlight
    05.05.2025
    BESSY II: Einblick in ultraschnelle Spinprozesse mit Femtoslicing
    Einem internationalen Team ist es an BESSY II erstmals gelungen, einen besonders schnellen Prozess im Inneren eines magnetischen Schichtsystems, eines Spinventils, aufzuklären: An der Femtoslicing-Beamline von BESSY II konnten sie die ultraschnelle Entmagnetisierung durch spinpolarisierte Stromimpulse beobachten. Die Ergebnisse helfen bei der Entwicklung von spintronischen Bauelementen für die schnellere und energieeffizientere Verarbeitung und Speicherung von Information. An der Zusammenarbeit waren Teams der Universität Straßburg, des HZB, der Universität Uppsala sowie weiterer Universitäten beteiligt.