Weniger ist mehr: Warum ein sparsamer Iridium-Katalysator so gut funktioniert

Das Team untersuchte zwei verschiedene Iridium-basierte Nanokatalysatoren für die Wasserelektrolyse: einen kommerziellen Benchmark-Katalysator (links) und den neu entwickelten P2X-Katalysator (rechts), der amorph ist und viermal weniger Iridium benötigt. Die Daten zeigen, wie sich die spezifischen chemischen Umgebungen in beiden Materialien unterscheiden und wie diese die Sauerstoffentwicklungsreaktion beeinflussen.

Das Team untersuchte zwei verschiedene Iridium-basierte Nanokatalysatoren für die Wasserelektrolyse: einen kommerziellen Benchmark-Katalysator (links) und den neu entwickelten P2X-Katalysator (rechts), der amorph ist und viermal weniger Iridium benötigt. Die Daten zeigen, wie sich die spezifischen chemischen Umgebungen in beiden Materialien unterscheiden und wie diese die Sauerstoffentwicklungsreaktion beeinflussen. © M. van der Merwe / HZB

Für die Produktion von Wasserstoff mit Elektrolyse werden Iridiumbasierte Katalysatoren benötigt. Nun zeigt ein Team am HZB und an der Lichtquelle ALBA, dass die neu entwickelten P2X-Katalysatoren, die mit nur einem Viertel des Iridiums auskommen, ebenso effizient und langzeitstabil sind wie die besten kommerziellen Katalysatoren. Messungen am EMIL-Labor an BESSY II haben nun ans Licht gebracht, wie die besondere chemische Umgebung im P2X-Kat während der Elektrolyse die Wasserspaltung befördert.

Wasserstoff wird in einem klimaneutralen Energiesystem künftig als Energiespeicher, Brennstoff und Rohstoff für die chemische Industrie benötigt. Am besten aus klimaneutraler Produktion, mit Strom aus Sonne oder Wind, über die Elektrolyse von Wasser. Als Schlüsseltechnologie gilt aktuell die Protonenaustauschmembran-Wasserelektrolyse (PEM-WE). Beide Elektroden sind dabei mit jeweils speziellen Elektrokatalysatoren beschichtet, um die gewünschte Reaktion zu beschleunigen.

Kostbar und selten: Iridium

Iridiumbasierte Katalysatoren eignen sich am besten für die Anode. Allerdings zählt Iridium zu den seltensten Elementen auf der Erde, und eine der größten Herausforderungen besteht darin, den Bedarf an diesem Edelmetall deutlich zu senken. Eine grobe Analyse (https://doi.org/10.1002/cite.201900101) zeigt, dass Anodenmaterialien auf Iridiumbasis nicht mehr als 0,05 mgIr/cm2 enthalten sollten, um den weltweiten Wasserstoffbedarf für den Transport mit PEM-WE-Technologie zu decken. Der derzeit beste kommerziell erhältliche Katalysator aus Iridiumoxid enthält jedoch etwa 40-mal so viel wie dieser Zielwert.

Weniger Iridium im P2X-Katalysator

Doch es gibt bereits neue Optionen: Im Rahmen des Kopernikus-P2X-Projekts wurde von der Heraeus-Gruppe ein neuer effizienter Nanokatalysator auf Iridiumbasis entwickelt, der aus einer dünnen Schicht Iridiumoxid auf einem nanostrukturierten Titandioxidträger besteht. Dieser sogenannte „P2X-Katalysator“ benötigt nur eine äußerst geringe Menge an Iridium (viermal niedriger als beim derzeit besten kommerziellen Material).

Ein Team am HZB unter der Leitung von Dr. Raul Garcia-Diez und Prof. Dr.-Ing. Marcus Bär hat zusammen mit einer Gruppe vom ALBA-Synchrotron in Barcelona den P2X-Katalysator untersucht und seine katalytische und spektroskopische Signatur mit dem kommerziellen kristallinen Referenzkatalysator verglichen. Dabei wies der P2X-Katalysator selbst im Langzeitbetrieb eine bemerkenswerte Stabilität auf.

Das HZB-Team hat dafür beide Katalysatortypen  während der Wasserelektrolyse (operando-Messungen) gründlich untersucht. „Wir wollten beobachten, wie sich die beiden unterschiedlichen Katalysatormaterialien während der elektrochemischen Sauerstoffentwicklungsreaktion strukturell und elektronisch verändern, und zwar mithilfe der operando-Ir-L3-Kanten-Röntgenabsorptionsspektroskopie (XAS)“, sagt Erstautorin Marianne van der Merwe aus Bärs Team. Sie entwickelten dafür ein neues experimentelles Protokoll, um sicherzustellen, dass die Ergebnisse in beiden Proben unter genau der gleichen Sauerstoffproduktionsrate gemessen werden. Dadurch war es möglich, die beiden Katalysatoren unter genau denselben Bedingungen zu vergleichen.

Chemische Umgebung macht den Unterschied

„Aus den Messdaten konnten wir schließen, dass die Mechanismen für die Sauerstoffentwicklungsreaktion in beiden Klassen von Iridiumoxid-Katalysatoren unterschiedlich sind, und dies wird durch die unterschiedlichen chemischen Umgebungen der beiden Materialien verursacht“, sagt van der Merwe. Die Messdaten zeigen auch, warum der P2X-Katalysator im Vergleich zum Referenzkatalysator sogar besser abschneidet: In der P2X-Probe nehmen die Bindungslängen zwischen Iridium und Sauerstoff bei OER-relevanten Potentialen deutlich stärker ab als beim Referenzkatalysator. Diese Verringerung der Ir-O-Bindungslängen kann mit der Beteiligung defekter Umgebungen zusammenhängen, die vermutlich eine Schlüsselrolle bei der Sauerstoffentwicklungsreaktion spielen.

Darüber hinaus korrelieren die Beobachtungen der elektronischen Zustände auch mit lokalen geometrischen Informationen, wie van der Merwe betont. Die Arbeit liefert wertvolle Informationen über die verschiedenen Mechanismen von Iridiumoxid-basierten Elektrokatalysatoren während der Sauerstoffentwicklungsreaktion und vertieft das Verständnis der Katalysatorleistung und -stabilität.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Berliner Wissenschaftspreis geht an Philipp Adelhelm
    Nachricht
    24.07.2025
    Berliner Wissenschaftspreis geht an Philipp Adelhelm
    Der Batterieforscher Prof. Dr. Philipp Adelhelm wird mit dem Berliner Wissenschaftspreis 2024 ausgezeichnet.  Er ist Professor am Institut für Chemie der Humboldt-Universität zu Berlin (HU) und leitet eine gemeinsame Forschungsgruppe der HU und des Helmholtz-Zentrums Berlin (HZB). Der Materialwissenschaftler und Elektrochemiker forscht zur Entwicklung nachhaltiger Batterien, die eine Schlüsselrolle für das Gelingen der Energiewende spielen. International zählt er zu den führenden Expert*innen auf dem Gebiet der Natrium-Ionen-Batterien.
  • Schriftrollen aus buddhistischem Schrein an BESSY II virtuell entrollt
    Science Highlight
    23.07.2025
    Schriftrollen aus buddhistischem Schrein an BESSY II virtuell entrollt
    In der mongolischen Sammlung des Ethnologischen Museums der Staatlichen Museen zu Berlin befindet sich ein einzigartiger Gungervaa-Schrein. Der Schrein enthält auch drei kleine Röllchen aus eng gewickelten langen Streifen, die in Seide gewickelt und verklebt sind. Ein Team am HZB konnte die Schrift auf den Streifen teilweise sichtbar machen, ohne die Röllchen durch Aufwickeln zu beschädigen. Mit 3D-Röntgentomographie erstellten sie eine Datenkopie des Röllchens und verwendeten im Anschluss ein mathematisches Verfahren, um den Streifen virtuell zu entrollen. Das Verfahren wird auch in der Batterieforschung angewandt.
  • Langzeittest zeigt: Effizienz von Perowskit-Zellen schwankt mit der Jahreszeit
    Science Highlight
    21.07.2025
    Langzeittest zeigt: Effizienz von Perowskit-Zellen schwankt mit der Jahreszeit
    Auf dem Dach eines Forschungsgebäudes am Campus Adlershof läuft ein einzigartiger Langzeitversuch: Die unterschiedlichsten Solarzellen sind dort über Jahre Wind und Wetter ausgesetzt und werden dabei vermessen. Darunter sind auch Perowskit-Solarzellen. Sie zeichnen sich durch hohe Effizienz zu geringen Herstellungskosten aus. Das Team um Dr. Carolin Ulbrich und Dr. Mark Khenkin hat Messdaten aus vier Jahren ausgewertet und in der Fachzeitschrift Advanced Energy Materials vorgestellt. Dies ist die bislang längste Messreihe zu Perowskit-Zellen im Außeneinsatz. Eine Erkenntnis: Standard-Perowskit-Solarzellen funktionieren während der Sommersaison auch über mehrere Jahre sehr gut, lassen jedoch in der dunkleren Jahreszeit etwas nach. Die Arbeit ist ein wichtiger Beitrag, um das Verhalten von Perowskit-Solarzellen unter realen Bedingungen zu verstehen.