Zwei Humboldt-Fellows am HZB

Dr. Kazuki Morita (links) forscht im Team von Antonio Abate an bleifreien Perowskit-Solarzellen. Dr. Qingping Wu (rechts) arbeitet mit Prof. Yan Lu an der Stabilität von Batterien. Beide Wissenschaftler sind Fellows der Alexander von Humboldt-Stiftung und bleiben bis Mitte 2026.

Dr. Kazuki Morita (links) forscht im Team von Antonio Abate an bleifreien Perowskit-Solarzellen. Dr. Qingping Wu (rechts) arbeitet mit Prof. Yan Lu an der Stabilität von Batterien. Beide Wissenschaftler sind Fellows der Alexander von Humboldt-Stiftung und bleiben bis Mitte 2026. © privat

Zwei junge Wissenschaftler sind zurzeit als Humboldt-Postdoktoranden am HZB tätig. Kazuki Morita bringt seine Expertise in Modellierung und Datenanalyse in die Solarenergieforschung im Team von Prof. Antonio Abate ein. Qingping Wu ist Experte für Batterieforschung und arbeitet mit Prof. Yan Lu zusammen an Lithium-Metall-Batterien mit hoher Energiedichte.

„Ich habe mich für das HZB entschieden, weil es einen hervorragenden Ruf in der Material- und Energieforschung hat und ich die Möglichkeit habe, mit Prof. Yan Lu und ihrem Team an innovativen elektrochemischen Speichertechnologien zu arbeiten“, sagt Qingping Wu. Wu schloss 2021 seine Promotion in Chemieingenieurwesen ab, anschließend arbeitete er als Assistenzprofessor am Chongqing Institute of Green and Intelligent Technology in China. Im August 2024 kam er mit einem Postdoktoranden-Stipendium der Alexander von Humboldt-Stiftung ans HZB. Seine Forschung dreht sich um Alterungsmechanismen und die Optimierung von Elektroden/Elektrolyt-Grenzflächen für Lithium-Metall-Batterien mit hoher Energiedichte.

Kazuki Morita erhielt 2022 seinen Doktortitel am Department of Materials des Imperial College London, Großbritannien. Er forschte im Anschluss als Postdoc am Department of Chemistry der University of Pennsylvania, USA, bevor er im Mai 2024 mit einem Humboldt-Stipendium für die nächsten zwei Jahre dem Team von Prof. Antonio Abate beitrat. „Seit meiner Zeit als Doktorand lese ich Veröffentlichungen des HZB, darunter auch die von Antonio. Das HZB ist ein ideales Umfeld für meine Forschung“, sagt er. Sein Thema ist die Stabilität von Zinnhalogenid-Perowskiten. "Insbesondere werde ich den Zinn-Oxidationsprozess mithilfe von Theorie und Simulationen untersuchen, während Antonio Abate sich hauptsächlich auf experimentelle Forschung konzentriert, sodass sich unsere Fachgebiete hervorragend ergänzen", sagt er.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Grüne Herstellung von Hybridmaterialien als hochempfindliche Röntgendetektoren
    Science Highlight
    08.05.2025
    Grüne Herstellung von Hybridmaterialien als hochempfindliche Röntgendetektoren
    Neue organisch-anorganische Hybridmaterialien auf Basis von Wismut sind hervorragend als Röntgendetektoren geeignet, sie sind deutlich empfindlicher als handelsübliche Röntgendetektoren und langzeitstabil. Darüber hinaus können sie ohne Lösungsmittel durch Kugelmahlen hergestellt werden, einem umweltfreundlichen Syntheseverfahren, das auch in der Industrie genutzt wird. Empfindlichere Detektoren würden die Strahlenbelastung bei Röntgenuntersuchungen erheblich reduzieren.

  • Energiespeicher: BAM, HZB und HU Berlin planen gemeinsames Berlin Battery Lab
    Nachricht
    07.05.2025
    Energiespeicher: BAM, HZB und HU Berlin planen gemeinsames Berlin Battery Lab
    Die Bundesanstalt für Materialforschung und -prüfung (BAM), das Helmholtz-Zentrum Berlin (HZB) und die Humboldt-Universität zu Berlin (HU Berlin) haben ein Memorandum of Understanding (MoU) zur Gründung des Berlin Battery Lab unterzeichnet. Das Labor wird die Expertise der drei Institutionen bündeln, um die Entwicklung nachhaltiger Batterietechnologien voranzutreiben. Die gemeinsame Forschungsinfrastruktur soll auch der Industrie für wegweisende Projekte in diesem Bereich offenstehen.
  • Batterieforschung: Alterungsprozesse operando sichtbar gemacht
    Science Highlight
    29.04.2025
    Batterieforschung: Alterungsprozesse operando sichtbar gemacht
    Lithium-Knopfzellen mit Elektroden aus Nickel-Mangan-Kobalt-Oxiden (NMC) sind sehr leistungsfähig. Doch mit der Zeit lässt die Kapazität leider nach. Nun konnte ein Team erstmals mit einem zerstörungsfreien Verfahren beobachten, wie sich die Elementzusammensetzung der einzelnen Schichten in einer Knopfzelle während der Ladezyklen verändert. An der Studie, die nun im Fachjournal Small erschienen ist, waren Teams der Physikalisch-Technischen Bundesanstalt (PTB), der Universität Münster sowie Forschende der Forschungsgruppe SyncLab des HZB und des Applikationslabors BLiX der Technischen Universität Berlin beteiligt. Ein Teil der Messungen fand mit einem Instrument im BLiX-Labor statt, ein weiterer Teil an der Synchrotronquelle BESSY II.