Katalysatorplattform verbessert das Verständnis von arbeitenden Katalysatoren

© FHI

Eine neuartige Katalysatorplattform, bekannt als Laterally Condensed Catalysts (LCC), wurde entwickelt, um das Design und die Analyse der funktionalen Schnittstelle zu ermöglichen, die die aktive Phase mit ihrer Unterstützung verbindet. Diese Schnittstelle beeinflusst nicht nur die chemischen Eigenschaften der reaktiven Schnittstelle, sondern kontrolliert auch deren Stabilität und damit die Nachhaltigkeit der katalytischen Materialien. Die Entwicklung wurde wesentlich durch die Anwendung von operando-Spektroskopie am Synchrotron BESSY II unterstützt, die es ermöglichte, die dynamischen Prozesse und Strukturen unter Reaktionsbedingungen zu beobachten und zu verstehen.

Unbeschränkte Kombinationen in der Zusammensetzung zwischen aktiver Phase und Unterstützung ermöglichen beispielsweise den direkten Energietransfer zur reaktiven Schnittstelle in der Elektrokatalyse oder elektrischen Heizung. Die physikalische Synthesemethodik im Rahmen des FHI-HZB CatLab-Projekts, die aus der Solarzellentechnologie stammt, ermöglicht den Zugang zu präzisen und homogenen Strukturen und Chemie. Dies erleichtert das mechanistische Verständnis von arbeitenden Katalysatoren und deren anschließende Optimierung durch die Untersuchung reaktiver und funktionaler Schnittstellen mittels Operando-Spektroskopie. Die hier untersuchten Dünnschichtkatalysatoren wurden mit dem Ziel synthetisiert, die Schnittstellenstruktur von Leistungskatalysatoren zu entwerfen und die Materiallücke zwischen Modell- und realen Pulverkatalysatoren zu schließen, während der Einsatz von Edelmetallen minimiert wird. Seine einzigartige flache und dicht gepackte Struktur (LCC) ermöglicht es, eine homogene hohe Dichte an oberflächenaktiven Stellen zu erreichen, wodurch der Gehalt an Material im "Bulk" oder der Unterfläche der aktiven Katalysatoren minimiert wird, was sich positiv auf die Selektivität der katalysierten Reaktion auswirkt.

Diese Bemühungen werden in einer Studie beschrieben, die in Nature Communications veröffentlicht wurde, mit dem Titel "Rationally Designed Laterally-Condensed-Catalysts Deliver Robust Activity and Selectivity for Ethylene Production in Acetylene Hydrogenation." Die Studie ist Teil des CatLab-Projekts, einer Zusammenarbeit, die prominent das Fritz-Haber-Institut der Max-Planck-Gesellschaft (FHI), das Helmholtz-Zentrum Berlin für Materialien und Energie und das Max-Planck-Institut für chemische Energiekonversion umfasst. Das CatLab-Projekt wird vom Bundesministerium für Bildung und Forschung (BMBF) gefördert.

Lesen Sie die ausführliche Mitteilung auf der Webseite des FHI >

FHI

  • Link kopieren

Das könnte Sie auch interessieren

  • BESSY II: Einblick in ultraschnelle Spinprozesse mit Femtoslicing
    Science Highlight
    05.05.2025
    BESSY II: Einblick in ultraschnelle Spinprozesse mit Femtoslicing
    Einem internationalen Team ist es an BESSY II erstmals gelungen, einen besonders schnellen Prozess im Inneren eines magnetischen Schichtsystems, eines Spinventils, aufzuklären: An der Femtoslicing-Beamline von BESSY II konnten sie die ultraschnelle Entmagnetisierung durch spinpolarisierte Stromimpulse beobachten. Die Ergebnisse helfen bei der Entwicklung von spintronischen Bauelementen für die schnellere und energieeffizientere Verarbeitung und Speicherung von Information. An der Zusammenarbeit waren Teams der Universität Straßburg, des HZB, der Universität Uppsala sowie weiterer Universitäten beteiligt.
  • Batterieforschung: Alterungsprozesse operando sichtbar gemacht
    Science Highlight
    29.04.2025
    Batterieforschung: Alterungsprozesse operando sichtbar gemacht
    Lithium-Knopfzellen mit Elektroden aus Nickel-Mangan-Kobalt-Oxiden (NMC) sind sehr leistungsfähig. Doch mit der Zeit lässt die Kapazität leider nach. Nun konnte ein Team erstmals mit einem zerstörungsfreien Verfahren beobachten, wie sich die Elementzusammensetzung der einzelnen Schichten in einer Knopfzelle während der Ladezyklen verändert. An der Studie, die nun im Fachjournal Small erschienen ist, waren Teams der Physikalisch-Technischen Bundesanstalt (PTB), der Universität Münster sowie Forschende der Forschungsgruppe SyncLab des HZB und des Applikationslabors BLiX der Technischen Universität Berlin beteiligt. Ein Teil der Messungen fand mit einem Instrument im BLiX-Labor statt, ein weiterer Teil an der Synchrotronquelle BESSY II.
  • Neues Instrument bei BESSY II: Die OÆSE-Endstation in EMIL
    Science Highlight
    23.04.2025
    Neues Instrument bei BESSY II: Die OÆSE-Endstation in EMIL
    An BESSY II steht nun ein neues Instrument zur Untersuchung von Katalysatormaterialien, Batterieelektroden und anderen Energiesystemen zur Verfügung: die Operando Absorption and Emission Spectroscopy on EMIL (OÆSE) Endstation im Energy Materials In-situ Laboratory Berlin (EMIL). Ein Team um Raul Garcia-Diez und Marcus Bär hat die Leistungsfähigkeit des Instruments an elektrochemisch abgeschiedenem Kupfer demonstriert.