HZB Sets New World Record for CIGS Perovskite Tandem Solar Cells

© G. Farias Basulto / HZB

The tandem cell consists of a combination of CIGS and perovskite and achieves a certified record efficiency of 24.6%.

The tandem cell consists of a combination of CIGS and perovskite and achieves a certified record efficiency of 24.6%. © G. Farias Basulto / HZB

The main components are clearly visible under the scanning electron microscope: granular CIGS crystals on the contact layer, followed by an intermediate layer of aluminium-doped zinc oxide, above which is the extremely thin perovskite layer (black). This is followed by an indium-doped zinc oxide layer and an anti-reflective coating.

The main components are clearly visible under the scanning electron microscope: granular CIGS crystals on the contact layer, followed by an intermediate layer of aluminium-doped zinc oxide, above which is the extremely thin perovskite layer (black). This is followed by an indium-doped zinc oxide layer and an anti-reflective coating. © HZB

Combining two semiconductor thin films into a tandem solar cell can achieve high efficiencies with a minimal environmental footprint. Teams from HZB and Humboldt University Berlin have now presented a CIGS-perovskite tandem cell that sets a new world record with an efficiency of 24.6%, certified by the independent Fraunhofer Institute for Solar Energy Systems.

Thin-film solar cells require little energy and material to produce and therefore have a very small environmental footprint. In addition to the well-known and market-leading silicon solar cells, there are also thin-film solar cells, e.g. based on copper, indium, gallium and selenium, known as CIGS cells. CIGS thin films can even be applied to flexible substrates.

Now, experts from HZB and Humboldt University Berlin, have developed a new tandem solar cell that combines a bottom cell made of CIGS with a top cell based on perovskite. By improving the contact layers between the top and bottom cells, they were able to increase the efficiency to 24.6 %. This is the current world record, as certified by the Fraunhofer Institute for Solar Energy Systems ISE in Freiburg, Germany.

As always, this record cell was the result of a successful team effort: the top cell was fabricated by TU Berlin master's student Thede Mehlhop under the supervision of Stefan Gall. The perovskite absorber layer was produced in the joint laboratory of HZB and Humboldt University of Berlin. The CIGS sub-cell and contact layers were fabricated by HZB researcher Guillermo Farias Basulto. He also used the high-performance cluster system KOALA, which enables the deposition of perovskites and contact layers in vacuum at HZB.

‘At HZB, we have highly specialised laboratories and experts who are top performers in their fields. With this world record tandem cell, they have once again shown how fruitfully they work together,' says Prof. Rutger Schlatmann, spokesman for the Solar Energy Department at HZB.

The record announced today is not the first world record at HZB: HZB teams have already achieved world record values for tandem solar cells several times, most recently for silicon-perovskite tandem solar cells, but also with the combination CIGS-perovskite.

We are confident that CIGS-perovskite tandem cells can achieve much higher efficiencies, probably more than 30%," says Prof. Rutger Schlatmann.

arö

  • Copy link

You might also be interested in

  • Green fabrication of hybrid materials as highly sensitive X-ray detectors
    Science Highlight
    08.05.2025
    Green fabrication of hybrid materials as highly sensitive X-ray detectors
    New bismuth-based organic-inorganic hybrid materials show exceptional sensitivity and long-term stability as X-ray detectors, significantly more sensitive than commercial X-ray detectors. In addition, these materials can be produced without solvents by ball milling, a mechanochemical synthesis process that is environmentally friendly and scalable. More sensitive detectors would allow for a reduction in the radiation exposure during X-ray examinations.
  • Electrical energy storage: BAM, HZB, and HU Berlin plan joint Berlin Battery Lab
    News
    07.05.2025
    Electrical energy storage: BAM, HZB, and HU Berlin plan joint Berlin Battery Lab
    The Federal Institute for Materials Research and Testing (BAM), the Helmholtz-Zentrum Berlin (HZB), and Humboldt University of Berlin (HU Berlin) have signed a memorandum of understanding (MoU) to establish the Berlin Battery Lab. The lab will pool the expertise of the three institutions to advance the development of sustainable battery technologies. The joint research infrastructure will also be open to industry for pioneering projects in this field.
  • BESSY II: Insight into ultrafast spin processes with femtoslicing
    Science Highlight
    05.05.2025
    BESSY II: Insight into ultrafast spin processes with femtoslicing
    An international team has succeeded at BESSY II for the first time to elucidate how ultrafast spin-polarised current pulses can be characterised by measuring the ultrafast demagnetisation in a magnetic layer system within the first hundreds of femtoseconds. The findings are useful for the development of spintronic devices that enable faster and more energy-efficient information processing and storage. The collaboration involved teams from the University of Strasbourg, HZB, Uppsala University and several other universities.