Largest magnetic anisotropy of a molecule measured at BESSY II

THz-EPR setup in the experimental hall of BESSY II.

THz-EPR setup in the experimental hall of BESSY II. © HZB

<p class="x_MsoNormal">The magnetic properties of the investigated bismuth complex (center) were investigated using THz-EPR spectroscopy at BESSY II. The method uses electromagnetic radiation from the THz to the infrared range in combination with high magnetic fields.

The magnetic properties of the investigated bismuth complex (center) were investigated using THz-EPR spectroscopy at BESSY II. The method uses electromagnetic radiation from the THz to the infrared range in combination with high magnetic fields. © HZB

At the Berlin synchrotron radiation source BESSY II, the largest magnetic anisotropy of a single molecule ever measured experimentally has been determined. The larger this anisotropy is, the better a molecule is suited as a molecular nanomagnet. Such nanomagnets have a wide range of potential applications, for example, in energy-efficient data storage. Researchers from the Max Planck Institute for Kohlenforschung (MPI KOFO), the Joint Lab EPR4Energy of the Max Planck Institute for Chemical Energy Conversion (MPI CEC) and the Helmholtz-Zentrum Berlin were involved in the study.

The research involved a bismuth complex synthesized in the group of Josep Cornella (MPI KOFO). This molecule has unique magnetic properties that a team led by Frank Neese (MPI KOFO) recently predicted in theoretical studies. So far, however, all attempts to measure the magnetic properties of the bismuth complex and thus experimentally confirm the theoretical predictions have failed.

This important step has now been achieved by using THz electron paramagnetic resonance spectroscopy (THz-EPR) at the synchrotron radiation source BESSY II, which is operated by the HZB in Berlin.

“The results show in a fascinating way that our method can be used to determine extremely high values of the magnetic anisotropy with high accuracy. Through our cooperation with scientists from fundamental research, we are thereby making a great step forward in the understanding of this class of materials,” says Tarek Al Said (HZB), first author of the study, which was recently published in the renowned Journal of the American Chemical Society.

 

red./arö

  • Copy link

You might also be interested in

  • Green fabrication of hybrid materials as highly sensitive X-ray detectors
    Science Highlight
    08.05.2025
    Green fabrication of hybrid materials as highly sensitive X-ray detectors
    New bismuth-based organic-inorganic hybrid materials show exceptional sensitivity and long-term stability as X-ray detectors, significantly more sensitive than commercial X-ray detectors. In addition, these materials can be produced without solvents by ball milling, a mechanochemical synthesis process that is environmentally friendly and scalable. More sensitive detectors would allow for a reduction in the radiation exposure during X-ray examinations.
  • Electrical energy storage: BAM, HZB, and HU Berlin plan joint Berlin Battery Lab
    News
    07.05.2025
    Electrical energy storage: BAM, HZB, and HU Berlin plan joint Berlin Battery Lab
    The Federal Institute for Materials Research and Testing (BAM), the Helmholtz-Zentrum Berlin (HZB), and Humboldt University of Berlin (HU Berlin) have signed a memorandum of understanding (MoU) to establish the Berlin Battery Lab. The lab will pool the expertise of the three institutions to advance the development of sustainable battery technologies. The joint research infrastructure will also be open to industry for pioneering projects in this field.
  • BESSY II: Insight into ultrafast spin processes with femtoslicing
    Science Highlight
    05.05.2025
    BESSY II: Insight into ultrafast spin processes with femtoslicing
    An international team has succeeded at BESSY II for the first time to elucidate how ultrafast spin-polarised current pulses can be characterised by measuring the ultrafast demagnetisation in a magnetic layer system within the first hundreds of femtoseconds. The findings are useful for the development of spintronic devices that enable faster and more energy-efficient information processing and storage. The collaboration involved teams from the University of Strasbourg, HZB, Uppsala University and several other universities.