Größte bisher bekannte magnetische Anisotropie eines Moleküls gemessen

Blick auf den THz-EPR-Experimentierplatz in der Halle der Synchrotronquelle BESSY II.

Blick auf den THz-EPR-Experimentierplatz in der Halle der Synchrotronquelle BESSY II. © HZB

Die magnetischen Eigenschaften des untersuchten Bismut-Komplexes (Mitte) konnten mit der THz-EPR-Spektroskopie bei BESSY II aufgeklärt werden. Bei der Methode kommen elektromagnetische Strahlung im THz bis Infrarot-Bereich sowie hohe Magnetfelder zum Einsatz.

Die magnetischen Eigenschaften des untersuchten Bismut-Komplexes (Mitte) konnten mit der THz-EPR-Spektroskopie bei BESSY II aufgeklärt werden. Bei der Methode kommen elektromagnetische Strahlung im THz bis Infrarot-Bereich sowie hohe Magnetfelder zum Einsatz. © HZB

An der Berliner Synchrotronstrahlungsquelle BESSY II ist es gelungen, die größte magnetische Anisotropie eines einzelnen Moleküls zu bestimmen, die jemals experimentell gemessen wurde. Je größer diese Anisotropie ist, desto besser eignet sich ein Molekül als molekularer Nanomagnet. Solche Nanomagnete besitzen eine Vielzahl von potenziellen Anwendungen, z. B. als energieeffiziente Datenspeicher. An der Studie waren Forschende aus dem Max-Planck-Institut für Kohlenforschung (MPI KOFO), dem Joint Lab EPR4Energy des Max-Planck-Instituts für Chemische Energiekonversion (MPI CEC) und dem Helmholtz-Zentrums Berlin beteiligt.

Untersucht wurde ein Bismut-Komplex, welches in der Gruppe von Josep Cornella (MPI KOFO) synthetisiert wurde. Dieses Molekül besitzt einzigartige magnetische Eigenschaften, die ein Team um Frank Neese (MPI KOFO) vor kurzem mit theoretischen Studien vorhergesagt hat. Bisher schlugen jedoch alle Versuche fehl, die magnetischen Eigenschaften des Bismut-Komplexes zu messen und damit die theoretischen Vorhersagen experimentell zu bestätigen.

THz-EPR an BESSY II

Dieser wichtige Schritt gelang nun durch eine spezielle Methode an der Synchrotronstrahlungsquelle BESSY II, die das HZB in Berlin betreibt. Die Forschenden setzten auf die THz-Elektronenparamagnetische Resonanz-Spektroskopie (THz-EPR). „Die Ergebnisse zeigen auf faszinierende Weise, dass wir mit unserer Methode extrem hohe Werte für die magnetische Anisotropie sehr genau bestimmen können. Durch die Zusammenarbeit mit Forschenden aus den Grundlagenwissenschaften erzielen wir damit einen großen Fortschritt für das Verständnis dieser Materialklasse“, sagt Tarek Al Said (HZB), der Erstautor der Studie, die kürzlich in der renommierten Fachzeitschrift Journal of the American Chemical Society publiziert wurde.

red./arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Schlüsseltechnologie für eine Zukunft ohne fossile Energieträger
    Interview
    21.08.2025
    Schlüsseltechnologie für eine Zukunft ohne fossile Energieträger
    Im Juni und Juli 2025 verbrachte der Katalyseforscher Nico Fischer Zeit am HZB. Es war sein „Sabbatical“, für einige Monate war er von seinen Pflichten als Direktor des Katalyse-Instituts in Cape Town entbunden und konnte sich nur der Forschung widmen. Mit dem HZB arbeitet sein Institut an zwei Projekten, die mit Hilfe von neuartigen Katalysatortechnologien umweltfreundliche Alternativen erschließen sollen. Mit ihm sprach Antonia Rötger.

  • 5000. Patient in der Augentumortherapie mit Protonen behandelt
    Nachricht
    19.08.2025
    5000. Patient in der Augentumortherapie mit Protonen behandelt
    Seit mehr als 20 Jahren bieten die Charité – Universitätsmedizin Berlin und das Helmholtz-Zentrum Berlin (HZB) gemeinsam die Bestrahlung von Augentumoren mit Protonen an. Dafür betreibt das HZB einen Protonenbeschleuniger in Berlin-Wannsee, die medizinische Betreuung der Patienten erfolgt durch die Charité. Anfang August wurde der 5000. Patient behandelt.
  • Iridiumfreie Katalysatoren für die saure Wasserelektrolyse untersucht
    Science Highlight
    13.08.2025
    Iridiumfreie Katalysatoren für die saure Wasserelektrolyse untersucht
    Wasserstoff wird künftig eine wichtige Rolle spielen, als Brennstoff und als Rohstoff für die Industrie. Um jedoch relevante Mengen an Wasserstoff zu produzieren, muss Wasserelektrolyse im Multi-Gigawatt-Maßstab machbar werden. Ein Engpass sind die benötigten Katalysatoren, insbesondere Iridium ist ein extrem seltenes Element. Eine internationale Kooperation hat daher Iridiumfreie Katalysatoren für die saure Wasserelektrolyse untersucht, die auf dem Element Kobalt basieren. Durch Untersuchungen, unter anderem am LiXEdrom an der Berliner Röntgenquelle BESSY II, konnten sie Prozesse bei der Wasserelektrolyse in einem Kobalt-Eisen-Blei-Oxid-Material als Anode aufklären. Die Studie ist in Nature Energy publiziert.