Nanoinseln auf Silizium mit schaltbaren topologischen Texturen

Künstlerische Darstellung des zentrierten, nach unten konvergierenden Polarisationsfeldes. Es resultiert aus der Kompression des Polarisationsflusses durch die Seitenwände der Nanoinseln, die sich nach unten zusammenziehen. Die Textur ähnelt einem Flüssigkeitsstrudel, der in einen Trichter fließt.

Künstlerische Darstellung des zentrierten, nach unten konvergierenden Polarisationsfeldes. Es resultiert aus der Kompression des Polarisationsflusses durch die Seitenwände der Nanoinseln, die sich nach unten zusammenziehen. Die Textur ähnelt einem Flüssigkeitsstrudel, der in einen Trichter fließt. © Laura Canil /HZB

Jede Reihe in der Tabelle entspricht einer bestimmten Orientierung der Probe. Die Spalten zeigen die Topographie (links) und die Piezoresponse-Kraftmikroskopie (PFM)-Bilder. In der lateralen PFM-Amplitude zeigen die Nanoinseln ein Muster aus dunklen und hellen Bereichen, das an Kaffeebohnen erinnert und typisch für Texturen mit zentrierter polarer Verteilung ist.

Jede Reihe in der Tabelle entspricht einer bestimmten Orientierung der Probe. Die Spalten zeigen die Topographie (links) und die Piezoresponse-Kraftmikroskopie (PFM)-Bilder. In der lateralen PFM-Amplitude zeigen die Nanoinseln ein Muster aus dunklen und hellen Bereichen, das an Kaffeebohnen erinnert und typisch für Texturen mit zentrierter polarer Verteilung ist. © HZB

Nanostrukturen mit spezifischen elektromagnetischen Texturen versprechen Anwendungsmöglichkeiten für die Nanoelektronik und zukünftige Informationstechnologien. Es ist jedoch sehr schwierig, solche Texturen zu kontrollieren. Nun hat ein Team am HZB eine bestimmte Klasse von Nanoinseln auf Silizium mit chiralen, wirbelnden polaren Texturen untersucht, die durch ein externes elektrisches Feld stabilisiert und sogar reversibel umgeschaltet werden können.

Ferroelektrika im Nanomaßstab weisen eine Fülle an polaren und manchmal wirbelnden (chiralen) elektromagnetischen Texturen auf. Diese Texturen sind physikalisch faszinierend, versprechen aber auch eine Reihe von Anwendungen, ob in der Nanoelektronik oder in künftigen Informationstechnologien: Zum Beispiel als ultrakompakte Datenspeicher oder extrem energieeffiziente Feldeffekttransistoren. Ein Knackpunkt ist jedoch ihre Stabilität und die Frage, ob es möglich ist, diese Texturen durch einen externen elektrischen oder optischen Reiz zu kontrollieren.

Neue Perspektiven

Ein Team um Prof. Catherine Dubourdieu (HZB und FU Berlin) hat nun in Nature Communications eine Arbeit veröffentlicht, die neue Perspektiven eröffnet. In Zusammenarbeit mit Teams aus CEMES-CNRS in Toulouse, der Universität Picardie in Amiens und dem Jozef-Stefan-Institut in Ljubljana hat die Gruppe um Dubourdieu eine besonders interessante Klasse von Nanoinseln auf Silizium untersucht und gezeigt, dass hier die Manipulation gelingen kann.

Nanoinseln auf Silizium

„Wir haben BaTiO3-Nanostrukturen hergestellt, die winzige Inseln auf einem Siliziumsubstrat bilden“, erklärt Dubourdieu. Die Nanoinseln haben eine trapezförmige Form mit Abmessungen von 30–60 nm (unten 30 nm, oben 60 nm) und weisen stabile Polarisationsdomänen auf. „Durch Feinjustierung bei der Siliziumwafer-Passivierung konnten wir die Keimbildung dieser Nanoinseln induzieren“, sagt Dong-Jik Kim, der in Dubourdieus Team forscht.

Domänen mit PFM untersucht

Die Domänenmuster wurden mit der Methode der Piezoresponse-Kraftmikroskopie (PFM) untersucht. „Sowohl die PFM-Messdaten als auch die Phasenfeldmodellierung deuten auf eine zentrierte, nach unten konvergente Polarisation hin, was perfekt mit den Informationen übereinstimmt, die wir unter dem Rastertransmissions-Elektronenmikroskop gewonnen haben“, sagt Doktorand Ibukun Olaniyan.

Reversibles Schalten möglich!

Insbesondere konnten sie eine wirbelnde Komponente um die Achse der Nanoinsel erkennen, die die Chiralität verursacht. „Die Textur ähnelt einem Flüssigkeitsstrudel, der in einen Trichter fließt“, erklärt Dubourdieu. „Die nach unten konvergierenden Nanodomänen im Zentrum können durch ein externes elektrisches Feld reversibel in nach oben divergierende Nanodomänen im Zentrum umgeschaltet werden“, betont sie.

„In dieser Arbeit haben wir gezeigt, dass chirale topologische Texturen durch geeignete Nanostrukturen stabilisiert werden können“, sagt Dubourdieu. Die Möglichkeit, in BaTiO3-Nanostrukturen chirale, wirbelnde, polare Texturen zu erzeugen und elektrisch zu manipulieren, ist für zukünftige Anwendungen sehr vielversprechend.

Hinweis: Diese Arbeit wurde teilweise durch den ERC Advanced Grant LUCIOLE (101098216) unterstützt.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Wie sich Nanokatalysatoren während der Katalyse verändern
    Science Highlight
    10.09.2025
    Wie sich Nanokatalysatoren während der Katalyse verändern
    Mit der Kombination aus Spektromikroskopie an BESSY II und mikroskopischen Analysen am NanoLab von DESY gelang es einem Team, neue Einblicke in das chemische Verhalten von Nanokatalysatoren während der Katalyse zu gewinnen. Die Nanopartikel bestanden aus einem Platin-Kern mit einer Rhodium-Schale. Diese Konfiguration ermöglicht es, strukturelle Änderungen beispielsweise in Rhodium-Platin-Katalysatoren für die Emissionskontrolle besser zu verstehen. Die Ergebnisse zeigen, dass Rhodium in der Schale unter typischen katalytischen Bedingungen teilweise ins Innere der Nanopartikel diffundieren kann. Dabei verbleibt jedoch der größte Teil an der Oberfläche und oxidiert. Dieser Prozess ist stark von der Oberflächenorientierung der Nanopartikelfacetten abhängig.
  • KlarText-Preis für Hanna Trzesniowski
    Nachricht
    08.09.2025
    KlarText-Preis für Hanna Trzesniowski
    Die Chemikerin ist mit dem renommierten KlarText-Preis für Wissenschaftskommunikation der Klaus Tschira Stiftung ausgezeichnet worden.
  • Metalloxide: Wie Lichtpulse Elektronen in Bewegung setzen
    Science Highlight
    08.09.2025
    Metalloxide: Wie Lichtpulse Elektronen in Bewegung setzen
    Metalloxide kommen in der Natur reichlich vor und spielen eine zentrale Rolle in Technologien wie der Photokatalyse und der Photovoltaik. In den meisten Metalloxiden ist jedoch aufgrund der starken Abstoßung zwischen Elektronen benachbarter Metallatome die elektrische Leitfähigkeit sehr gering. Ein Team am HZB hat nun zusammen mit Partnerinstitutionen gezeigt, dass Lichtimpulse diese Abstoßungskräfte vorübergehend schwächen können. Dadurch sinkt die Energie, die für die Elektronenbeweglichkeit erforderlich ist, so dass ein metallähnliches Verhalten entsteht. Diese Entdeckung bietet eine neue Möglichkeit, Materialeigenschaften mit Licht zu manipulieren, und birgt ein hohes Potenzial für effizientere lichtbasierte Bauelemente.