Innovative Batterie-Elektrode aus Zinn-Schaum

Zinn lässt sich zu einem hochporösen Schaum verarbeiten. Wie dieser Zinn-Schaum (abgebildet) sich als Batterieelektrode verhält, hat ein interdisziplinäres Team am HZB untersucht.

Zinn lässt sich zu einem hochporösen Schaum verarbeiten. Wie dieser Zinn-Schaum (abgebildet) sich als Batterieelektrode verhält, hat ein interdisziplinäres Team am HZB untersucht. © B. Bouabadi / HZB

Metallbasierte Elektroden in Lithium-Ionen-Akkus versprechen deutlich höhere Kapazitäten als konventionelle Graphit-Elektroden. Leider degradieren sie aufgrund von mechanischen Beanspruchungen während der Lade- und Entladezyklen. Nun zeigt ein Team am HZB, dass ein hochporöser Schaum aus Zinn den mechanischen Stress während der Ladezyklen deutlich besser abfedern kann. Das macht Zinn-Schäume als potentielles Material für Lithium-Batterien interessant.

Moderne Lithium-Ionen-Batterien setzen in der Regel auf eine mehrschichtige Graphit-Elektrode, während die Gegenelektrode oft aus Kobaltoxid besteht. Beim Laden und Entladen wandern Lithium-Ionen in das Graphit ein, ohne signifikante Volumenänderungen des Materials zu verursachen. Die Kapazität von Graphit ist jedoch begrenzt, die Suche nach alternativen Materialien wird dadurch zu einem spannenden Forschungsgebiet. So bieten Metallbasierte Elektroden, beispielsweise aus Aluminium oder Zinn, potenziell eine höhere Kapazität. Allerdings neigen sie bei der Lithiumaufnahme zu einer deutlichen Volumenausdehnung, was mit Strukturveränderungen und Materialermüdung verbunden ist.

Eine Option, um Metall-Elektroden zu realisieren, die weniger rasch „ermüden“, besteht in der Nanostrukturierung der dünnen Metallfolien. Eine andere Option ist die Anwendung von porösen Metallschäumen. Als Metall ist Zinn besonders attraktiv, denn es besitzt eine fast dreimal höhere Kapazität pro Kilogramm als Graphit und ist darüber hinaus kein seltener Rohstoff sondern reichlich vorhanden.

Ein Forschungsteam aus dem Helmholtz-Zentrum Berlin (HZB) hat nun verschiedene Arten von Zinnelektroden während des Entlade- und Ladevorgangs mit operando Röntgenbildgebung untersucht, und einen innovativen Ansatz entwickelt, um diesem Problem zu begegnen. Ein Teil dieser Untersuchungen fand dabei an der BAMline an BESSY II statt. Außerdem entstanden hochaufgelöste radioskopische-Röntgen-Aufnahmen in Zusammenarbeit mit den Imaging-Experten Dr. Nikolai Kardjilov und Dr. André Hilger am HZB. „Auf diese Weise konnten wir die strukturellen Veränderungen in den untersuchten Elektroden auf Sn-Metallbasis während der Lade-/Entladevorgänge verfolgen“, sagt Dr. Bouchra Bouabadi, die die experimentelle Studie durchgeführt hat. In Zusammenarbeit mit dem Batterieexperten Dr. Sebastian Risse zeigt sie, wie sich die Morphologie der Zinnelektroden während des Betriebs durch die inhomogene Aufnahme von Lithium-Ionen verändert.

Die beste Variante der Zinn-Elektrode fertigte Dr. Francisco Garcia-Moreno an: Einen Schaum aus Zinn mit unzähligen, mikrometergroßen Poren. „Wir konnten zeigen, dass in einem solchen Zinn-Schaum deutlich weniger mechanischer Stress während der Volumenausdehnung auftritt“, sagt Dr. Risse. Das macht Zinn-Schäume als potentielles Material für Lithium-Batterien interessant.

Garcia-Moreno hat bereits zahlreiche Metallschäume untersucht, darunter auch solche für Bauteile in der Automobilindustrie und Aluminiumschäume für Batterieelektroden. „Die von uns an der TU Berlin entwickelten Zinnschäume sind hochporös und eine interessante Alternative zu traditionellen Elektrodenmaterialien“, sagt er. Dabei sei die Strukturierung von Zinnschäumen entscheidend, um mechanische Belastung maximal zu reduzieren. Auch aus wirtschaftlicher Sicht könnte die Zinn-Schaum-Technologie interessant sein: „Obwohl Zinnschaum teurer ist als herkömmliche Zinnfolien, bietet er eine kostengünstigere Alternative zu teuren Nanostrukturierungen, während er gleichzeitig deutlich mehr Lithium-Ionen speichern kann und damit eine Steigerung der Kapazität ermöglicht.“

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Grüne Herstellung von Hybridmaterialien als hochempfindliche Röntgendetektoren
    Science Highlight
    08.05.2025
    Grüne Herstellung von Hybridmaterialien als hochempfindliche Röntgendetektoren
    Neue organisch-anorganische Hybridmaterialien auf Basis von Wismut sind hervorragend als Röntgendetektoren geeignet, sie sind deutlich empfindlicher als handelsübliche Röntgendetektoren und langzeitstabil. Darüber hinaus können sie ohne Lösungsmittel durch Kugelmahlen hergestellt werden, einem umweltfreundlichen Syntheseverfahren, das auch in der Industrie genutzt wird. Empfindlichere Detektoren würden die Strahlenbelastung bei Röntgenuntersuchungen erheblich reduzieren.

  • Energiespeicher: BAM, HZB und HU Berlin planen gemeinsames Berlin Battery Lab
    Nachricht
    07.05.2025
    Energiespeicher: BAM, HZB und HU Berlin planen gemeinsames Berlin Battery Lab
    Die Bundesanstalt für Materialforschung und -prüfung (BAM), das Helmholtz-Zentrum Berlin (HZB) und die Humboldt-Universität zu Berlin (HU Berlin) haben ein Memorandum of Understanding (MoU) zur Gründung des Berlin Battery Lab unterzeichnet. Das Labor wird die Expertise der drei Institutionen bündeln, um die Entwicklung nachhaltiger Batterietechnologien voranzutreiben. Die gemeinsame Forschungsinfrastruktur soll auch der Industrie für wegweisende Projekte in diesem Bereich offenstehen.
  • BESSY II: Einblick in ultraschnelle Spinprozesse mit Femtoslicing
    Science Highlight
    05.05.2025
    BESSY II: Einblick in ultraschnelle Spinprozesse mit Femtoslicing
    Einem internationalen Team ist es an BESSY II erstmals gelungen, einen besonders schnellen Prozess im Inneren eines magnetischen Schichtsystems, eines Spinventils, aufzuklären: An der Femtoslicing-Beamline von BESSY II konnten sie die ultraschnelle Entmagnetisierung durch spinpolarisierte Stromimpulse beobachten. Die Ergebnisse helfen bei der Entwicklung von spintronischen Bauelementen für die schnellere und energieeffizientere Verarbeitung und Speicherung von Information. An der Zusammenarbeit waren Teams der Universität Straßburg, des HZB, der Universität Uppsala sowie weiterer Universitäten beteiligt.