Perowskit-Solarzellen: Neue BMBF-Nachwuchsgruppe am HZB

Im Projekt COMET-PV will Dr. Artem Musiienko die Entwicklung von Perowskit-Solarzellen deutlich beschleunigen. Dabei setzt er auf Robotik und KI, um die vielfältigen Variationen in der Materialzusammensetzung von Zinnbasierten Perowskiten zu analysieren. Der Physiker wird am HZB eine Nachwuchsgruppe (Young Investigator Group) aufbauen.

Im Projekt COMET-PV will Dr. Artem Musiienko die Entwicklung von Perowskit-Solarzellen deutlich beschleunigen. Dabei setzt er auf Robotik und KI, um die vielfältigen Variationen in der Materialzusammensetzung von Zinnbasierten Perowskiten zu analysieren. Der Physiker wird am HZB eine Nachwuchsgruppe (Young Investigator Group) aufbauen. © M. Setzpfandt / HZB

Im Projekt COMET-PV will Dr. Artem Musiienko die Entwicklung von Perowskit-Solarzellen deutlich beschleunigen. Dabei setzt er auf Robotik und KI, um die vielfältigen Variationen in der Materialzusammensetzung von Zinnbasierten Perowskiten zu analysieren. Der Physiker wird am HZB eine Nachwuchsgruppe (Young Investigator Group) aufbauen. Darüber hinaus wird er an der Fakultät Physik der Humboldt-Universität zu Berlin auch Lehrverpflichtungen übernehmen.

Metall-Halogenid-Perowskite sind eine große Materialklasse, die seit einigen Jahren intensiv erforscht wird. Aufgrund ihrer halbleitenden Eigenschaften eignen sie sich für leistungsstarke und preisgünstige Solarzellen, insbesondere auch im Tandem mit Solarzellen aus Silizium oder anderen Halbleitermaterialien. Teams aus dem HZB haben bereits mehrfach Weltrekord-Wirkungsgrade für Tandem-Solarzellen erreicht. Doch der Wettbewerb ist hart und in der Materialklasse der Perowskite gibt es unendlich viele Variationsmöglichkeiten.

Dabei gibt es einige Herausforderungen: So degradieren Perowskite, wenn sie Feuchtigkeit, Hitze und Licht ausgesetzt sind, so dass sie im Außeneinsatz unter realen Bedingungen noch nicht über Jahrzehnte stabil bleiben. Einige Hochleistungs-Perowskite basieren auch auf toxischen oder seltenen Elementen, was Konzepte erfordert, die die Nachhaltigkeit gewährleisten. Mit innovativen Ansätzen für Materialdesign und Grenzflächentechnik und mit Techniken, die den Forschungsprozess beschleunigen, lassen sich diese Herausforderungen angehen.

Hochdurchsatzmessungen mit Robotik

Hier setzt das Projekt von Dr. Artem Musiienko an: Sein Forschungsprojekt, das nun durch das BMBF NanoMatFutur Programm gefördert wird, trägt den Namen COMET-PV. Musiienko wird dafür im Labor einen Messplatz für optoelektronische Hochdurchsatzmessungen (HOME) aufbauen, die mit robotischer Unterstützung und automatischen Datenauswertung durchgeführt werden. Dabei wird sich die Forschung auf die Klasse der zinnbasierten Perowskite konzentrieren. Diese Materialien liegen in der Entwicklung hinter den bleibasierten Perowskiten deutlich zurück. Langfristig ist der Einbau von Zinn in die Perowskitschicht jedoch notwendig, um die Umweltverträglichkeit zu verbessern, größere Stabilität zu erreichen und über neuartige elektronische und optische Eigenschaften auch die Leistung weiter zu steigern.

Beschleunigung um Faktor 100

„Unser Ziel ist es, die Materialforschung insgesamt um den Faktor 100 zu beschleunigen. Dafür entwickeln wir einen neuen robotergestützten Ansatz, der uns auch hilft, im Wettbewerb um neue Rekorde weiter zu bestehen. Konkret wollen wir einen Wirkungsgrad von über 35 % erreichen“, sagt Musiienko. Die robotische Unterstützung ermöglicht es, sehr viele Varianten einer Materialzusammensetzung in kürzester Zeit zu analysieren und ihre Eigenschaften zu messen. Die Daten werden mit Hilfe von Methoden der Künstlicher Intelligenz ausgewertet.

Industriepartner im Boot

Das Projekt ist direkt mit der Industrie verbunden und bezieht Industriepartner aus den Bereichen Chemie, Robotik, Instrumentierung und Solarzellenproduktion ein. Darüber hinaus setzt der Physiker seine Zusammenarbeit mit renommierten internationalen Forschungseinrichtungen im Bereich der Solarenergie fort, darunter NREL (USA), KAUST (Saudi-Arabien), KAUNAS (Litauen), der Universität Oxford (England), der Southeast University in China.


Zum Forscher:

Artem Musiienko hat an der Karls-Universität in Prag, Tschechische Republik, in Physik promoviert. 2021 erhielt er ein Marie-Skłodowska-Curie-Stipendium, um seine Forschungsprojekte am Helmholtz-Zentrum Berlin (HZB) fortzusetzen, wo er sich auf innovative Charakterisierungstechniken, selbstorganisierende Monoschichten (SAMs) und die beschleunigte Entdeckung von Photovoltaik-Materialien konzentrierte. Vor Kurzem wurde er von der Marie Curie Alumni Association (MCAA) für seine Beiträge zu innovativen Charakterisierungstechniken und der Entdeckung von Photovoltaik-Materialien mit dem „Best Innovator Award“ ausgezeichnet.

Zum Projekt:

BMBF-Nachwuchswettbewerb NanoMatFutur Förderprogramm

COMET-PV - Kontaktierungslose Anpassung von Materialien und Grenzflächen im Hochdurchsatzverfahren für eine nachhaltige Tandem-Photovoltaik im Nanomaßstab

Förderlaufzeit: 5 Jahre

 

 

 

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Science Highlight
    21.10.2025
    BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Erstmals ist es einem Team an BESSY II gelungen, experimentell eindimensionale elektronische Eigenschaften in einem Material nachzuweisen. Die Proben bestanden aus kurzen Ketten aus Phosphoratomen, die sich auf einem Silbersubstrat selbst organisiert in bestimmten Winkeln bilden. Durch eine raffinierte Auswertung gelang es, die Beiträge von unterschiedlich ausgerichteten Ketten voneinander zu trennen und zu zeigen, dass die elektronischen Eigenschaften tatsächlich einen eindimensionalen Charakter besitzen. Berechnungen zeigten darüber hinaus, dass ein spannender Phasenübergang zu erwarten ist. Während das Material aus einzelnen Ketten halbleitend ist, wäre eine sehr dichte Kettenstruktur metallisch.
  • Ein innerer Kompass für Meereslebewesen im Paläozän
    Science Highlight
    20.10.2025
    Ein innerer Kompass für Meereslebewesen im Paläozän
    Vor Jahrmillionen produzierten einige Meeresorganismen mysteriöse Magnetpartikel von ungewöhnlicher Größe, die heute als Fossilien in Sedimenten zu finden sind. Nun ist es einem internationalen Team gelungen, die magnetischen Domänen auf einem dieser „Riesenmagnetfossilien” mit einer raffinierten Methode an der Diamond-Röntgenquelle zu kartieren. Ihre Analyse zeigt, dass diese Partikel es den Organismen ermöglicht haben könnten, winzige Schwankungen sowohl in der Richtung als auch in der Intensität des Erdmagnetfelds wahrzunehmen. Dadurch konnten sie sich verorten und über den Ozean navigieren. Die neue Methode eignet sich auch, um zu testen, ob bestimmte Eisenoxidpartikel in Marsproben tatsächlich biogenen Ursprungs sind.
  • Perowskit-Solarzellen aus Deutschland machen Chinas PV-Technik Konkurrenz - Technologietransfer-Preis des HZB 2025
    Nachricht
    15.10.2025
    Perowskit-Solarzellen aus Deutschland machen Chinas PV-Technik Konkurrenz - Technologietransfer-Preis des HZB 2025
    Photovoltaik ist die führende Technologie bei der Umstellung auf saubere Energie. Doch die traditionelle Solartechnologie auf Siliziumbasis hat ihre Effizienzgrenze erreicht. Daher hat ein HZB-Team eine auf Perowskit basierende Mehrfachzellenarchitektur entwickelt. Dafür erhielten Kevin J. Prince und Siddhartha Garud am 13. Oktober 2025 den mit 5.000 Euro dotierten Technologie-Transferpreis des Helmholtz-Zentrum Berlin (HZB).