New material for efficient separation of Deuterium at elevated Temperatures

The crystal structure of Cu-ZIF-gis that shows cylindrical straight channels along the c-axis. The pores were calculated with Connolly surfaces with a probe of 1.1 Å. (Cu, orange; N, blue; C, gray; O, magenta; H, white).

The crystal structure of Cu-ZIF-gis that shows cylindrical straight channels along the c-axis. The pores were calculated with Connolly surfaces with a probe of 1.1 Å. (Cu, orange; N, blue; C, gray; O, magenta; H, white). © Minji Jung / Department of Chemistry, UNIST

A novel porous material capable of separating deuterium (D2) from hydrogen (H2) at a temperature of 120 K has been introduced. Notably, this temperature exceeds the liquefaction point of natural gas, thus facilitating large-scale industrial applications. This advancement presents an attractive pathway for the economical production of D2 by leveraging the existing infrastructure of liquefied natural gas (LNG) production pipelines. The research conducted by Ulsan National Institute of Science & Technology (UNIST), Korea, Helmholtz-Zentrum Berlin, Heinz Maier Leibnitz Zentrum (MLZ), and Soongsil University, Korea, has been published in Nature Communications.

Deuterium, a stable isotope of hydrogen, plays a critical role in enhancing the durability and luminous efficiency of semiconductors and display devices, as well as serving as a fusion fuel in energy production. However, the increasing demand for D2 presents challenges in its production, primarily due to the need to separate from hydrogen through a cryogenic distillation process conducted at temperatures as low as 20 K (-253°C). While research has explored the use of metal-organic frameworks (MOFs) for D2 separation, their efficiency diminishes significantly at elevated temperatures.

In this study, the research team presented a copper-based zeolite imidazolate framework (Cu-ZIF-gis), which shows exceptional D2 separation performance, even at 120 K (-153). While typical MOFs operate effectively at around 23 K (-250), their performance decreases sharply as temperatures approach 77 K (-196). However, the newly developed Cu-based MOF demonstrates a significant advantage in maintaining its effectiveness at higher temperatures.

For the first time, the research team identified that the superior performance of this material results from the increased expansion of its lattice as the temperature rises. At cryogenic temperatures, the pores of the developed MOF are smaller than H2 molecules, thereby inhibiting their passage. However, as the temperature increases, the lattice expands, leading to an increase in pore size. This enlargement facilitates the passage of gases through the pores, thereby enabling the separation of H2 and D2 via the quantum sieving effect, wherein heavier molecules traverse the pores more efficiently at lower temperatures.

Confirmatory in-situ X-ray diffraction (XRD) and quasi-elastic neutron scattering (QENS) experiments, conducted at the Institut Laue-Langevin (ILL) in Grenoble, France, by the joint team from UNIST, HZB and MLZ, confirmed the expansion of the lattice framework with increasing temperature, as well as the difference in isotope diffusivity even at elevated temperatures. Additionally, the analysis from the Thermal Desorption Spectroscopy (TDS) experiments indicated stable D2 separation at elevated temperatures.

Professor Oh remarked, “The reported material exhibits markedly lower energy consumption and enhanced separation efficiency compared to most traditional methods, which operate at extremely low temperatures.” Dr. Jitae Park further noted, “These findings can be applied to develop sustainable isotope separation technologies using existing LNG cryogenic infrastructure, underscoring its potential industrial impact.”

Dr. Margarita Russina highlighted the crucial role of QENS in this study, stating: "With QENS, we can directly probe the molecular motion of H2 and D2 in MOFs, gaining key insights into their diffusion behavior and interactions with porous materials. The observed stronger confinement of D2 compared to H₂, a strictly nanoscale phenomenon, leads to remarkable effects on macroscopic properties, forming the basis for the development of a new generation of materials for more efficient isotope separation."

The research team, jointly led by Professor Hyunchul Oh from the Department of Chemistry at UNIST, Professor Jaheon Kim from Soongsil University, Dr. Jitae Park from Heinz Maier Leibnitz Zentrum (MLZ) at Technical University of Munich (TUM), and Dr. Margarita Russina from Helmholtz-Zentrum Berlin für Materialien und Energie (HZB) in Berlin, Germany announced this advancement on March 19, 2025. The study also involved Minji Jung, Jaewoo Park, and Raeesh Muhammad from the Department of Chemistry at UNIST, who served as co-first authors. The findings of this research have been published in Nature Communications on February 27, 2025. This study was supported by the National Research Foundation (NRF) of Korea and the Ministry of Science and ICT (MSIT), and the Institut Laue-Langevin (ILL) in Grenoble, France for the allocation of beam time.

UNIST /red.

  • Copy link

You might also be interested in

  • Green fabrication of hybrid materials as highly sensitive X-ray detectors
    Science Highlight
    08.05.2025
    Green fabrication of hybrid materials as highly sensitive X-ray detectors
    New bismuth-based organic-inorganic hybrid materials show exceptional sensitivity and long-term stability as X-ray detectors, significantly more sensitive than commercial X-ray detectors. In addition, these materials can be produced without solvents by ball milling, a mechanochemical synthesis process that is environmentally friendly and scalable. More sensitive detectors would allow for a reduction in the radiation exposure during X-ray examinations.
  • Electrical energy storage: BAM, HZB, and HU Berlin plan joint Berlin Battery Lab
    News
    07.05.2025
    Electrical energy storage: BAM, HZB, and HU Berlin plan joint Berlin Battery Lab
    The Federal Institute for Materials Research and Testing (BAM), the Helmholtz-Zentrum Berlin (HZB), and Humboldt University of Berlin (HU Berlin) have signed a memorandum of understanding (MoU) to establish the Berlin Battery Lab. The lab will pool the expertise of the three institutions to advance the development of sustainable battery technologies. The joint research infrastructure will also be open to industry for pioneering projects in this field.
  • BESSY II: Insight into ultrafast spin processes with femtoslicing
    Science Highlight
    05.05.2025
    BESSY II: Insight into ultrafast spin processes with femtoslicing
    An international team has succeeded at BESSY II for the first time to elucidate how ultrafast spin-polarised current pulses can be characterised by measuring the ultrafast demagnetisation in a magnetic layer system within the first hundreds of femtoseconds. The findings are useful for the development of spintronic devices that enable faster and more energy-efficient information processing and storage. The collaboration involved teams from the University of Strasbourg, HZB, Uppsala University and several other universities.