Katalyseforschung mit dem Röntgenmikroskop an BESSY II

TXM-Aufnahmen von Cu<sub>2</sub>O-W&uuml;rfeln (rosa) und metallischen Kupferpartikeln (gelb) zu unterschiedlichen Zeitpunkten: vor der Reaktion (a), nach 25 Minuten (b), 50 Minuten (c) und 75 Minuten (d). Dazu wurden zeitgleich spektroskopische TXM-Aufnahmen gemacht, die zeigen, wie sich die Kupferverbindungen ver&auml;ndern (siehe auch in der Publikation doi:10.1038/s41563-024-02084-8).

TXM-Aufnahmen von Cu2O-Würfeln (rosa) und metallischen Kupferpartikeln (gelb) zu unterschiedlichen Zeitpunkten: vor der Reaktion (a), nach 25 Minuten (b), 50 Minuten (c) und 75 Minuten (d). Dazu wurden zeitgleich spektroskopische TXM-Aufnahmen gemacht, die zeigen, wie sich die Kupferverbindungen verändern (siehe auch in der Publikation doi:10.1038/s41563-024-02084-8). © HZB

Anders als in der Schule gelernt, verändern sich manche Katalysatoren doch während der Reaktion: So zum Beispiel können bestimmte Elektrokatalysatoren ihre Struktur und Zusammensetzung während der Reaktion verändern, wenn ein elektrisches Feld anliegt. An der Berliner Röntgenquelle BESSY II gibt es mit dem Röntgenmikroskop TXM ein weltweit einzigartiges Instrument, um solche Veränderungen im Detail zu untersuchen. Die Ergebnisse helfen bei der Entwicklung von innovativen Katalysatoren für die unterschiedlichsten Anwendungen. Ein Beispiel wurde neulich in Nature Materials publiziert. Dabei ging es um die Synthese von Ammoniak aus Abfallnitraten.

Ammoniak (NH3) ist ein Grundbestandteil von Dünger und sichert weltweit die Produktivität der Landwirtschaft. Bisher wird Ammoniak industriell mit hohem Energieaufwand über das Haber-Bosch-Verfahren synthetisiert. Dabei entstehen relevante Mengen an Treibhausgasen, die den Klimawandel vorantreiben. Mit der Entwicklung von alternativen Methoden könnte Ammoniak mit deutlich weniger Treibhausgas-Emissionen produziert werden.

Katalysatoren für die Ammoniak-Synthese mit weniger Emissionen

Dazu gibt es vielversprechende Ansätze. So hat ein Team aus dem Fritz-Haber-Institut einen Katalysator auf Basis von nanokristallinem Kupferoxid untersucht. Während der katalytischen Reaktion wandelte sich ein zunehmender Anteil dieser Nanokristalle in metallische Partikel aus reinem Kupfer um.

Neue Einblicke am Röntgenmikroskop TXM

Unter dem Transmissions-Elektronenmikroskop (TEM) ließen sich die morphologischen Veränderungen dokumentieren, doch um Aufschluss über die chemischen Prozesse während der Reaktion zu gewinnen, arbeitete das FHI-Team mit der Gruppe um Prof. Gerd Schneider am HZB zusammen. Das Transmissions-Röntgenmikroskop (TXM) ist weltweit einzigartig für die Katalyse-Forschung, da die Katalysatoren im gleichen Objekthalter sowohl in TEM als auch im TXM untersucht werden können, um komplementäre Informationen zur Katalyse zu gewinnen. Als Operando-Mikroskop ermöglicht das TXM auf der Nanoskala spektroskopische Daten zu ermitteln und damit eine Analyse von chemischen Prozessen und Reaktionen.

„Wir konnten zeigen, dass für längere Zeiträume sowohl Kupferdioxid- als auch metallische Kupferpartikel existieren und durch bestimmte Oberflächenhydroxid-Gruppen kinetisch stabilisiert werden“, sagt HZB-Physiker Dr. Christoph Pratsch aus dem Team um Schneider, der die TXM-Untersuchungen durchgeführt hatte.

Wechselwirkungen sind entscheidend für die Effizienz

Die Zusammensetzung dieser Mischung und die Form der entwickelten Katalysatoren hängen stark vom angelegten elektrischen Potenzial, der chemischen Umgebung und der Reaktionsdauer ab. Die Wechselwirkung zwischen dem Elektrolyten und dem Katalysator ist dabei ausschlaggebend für den Ertrag an Ammoniak und damit für die Effizienz der gewünschten Reaktion.

Ausblick: Zwei neue Röntgenmikroskope

Aktuell arbeitet das Röntgenmikroskopie-Team an der Entwicklung zweier neuer Mikroskope. Ein neues TXM wird routinemäßig vom weichen bis in den tender Röntgenbereich spektromikroskopische Untersuchung auch unter Ausnutzung der Phasendrehungen der Röntgenwellen im Objekt ermöglichen. Zudem steht ein neuartiges Raster-Röntgenmikroskop kurz vor der Fertigstellung: „Hier werden wir über die Messung der Elektronenemission sowohl Prozesse im Inneren als auch an den Oberflächen von Katalysatoren unterscheiden können“, erläutert Gerd Schneider. Zusätzlich können mittels Röntgenfluoreszenz die Elementverteilungen in nanoskaligen Katalysatoren gemessen werden. Die neuen Mikroskope können bereits an BESSY II genutzt werden. Aber ihr volles Potenzial werden sie erst an der Nachfolgequelle BESSY III entfalten, die 2035 in Betrieb gehen soll. Dann werden die beiden neuen Instrumente noch weitaus tiefere Einblicke in katalytische Abläufe ermöglichen.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Iridiumfreie Katalysatoren für die saure Wasserelektrolyse untersucht
    Science Highlight
    13.08.2025
    Iridiumfreie Katalysatoren für die saure Wasserelektrolyse untersucht
    Wasserstoff wird künftig eine wichtige Rolle spielen, als Brennstoff und als Rohstoff für die Industrie. Um jedoch relevante Mengen an Wasserstoff zu produzieren, muss Wasserelektrolyse im Multi-Gigawatt-Maßstab machbar werden. Ein Engpass sind die benötigten Katalysatoren, insbesondere Iridium ist ein extrem seltenes Element. Eine internationale Kooperation hat daher Iridiumfreie Katalysatoren für die saure Wasserelektrolyse untersucht, die auf dem Element Kobalt basieren. Durch Untersuchungen, unter anderem am LiXEdrom an der Berliner Röntgenquelle BESSY II, konnten sie Prozesse bei der Wasserelektrolyse in einem Kobalt-Eisen-Blei-Oxid-Material als Anode aufklären. Die Studie ist in Nature Energy publiziert.
  • MXene als „Rahmen“ für zweidimensionale Wasserfilme zeigt neue Eigenschaften
    Science Highlight
    13.08.2025
    MXene als „Rahmen“ für zweidimensionale Wasserfilme zeigt neue Eigenschaften
    Ein internationales Team unter Leitung von Dr. Tristan Petit und Prof. Yury Gogotsi hat MXene mit eingeschlossenem Wasser und Ionen an der BESSY II untersucht. Dabei ging das Wasser mit steigender Temperatur vom Zustand als lokalisierte Eiskluster in einen quasi-zweidimensionalen Wasserfilm über. Das Team entdeckte dabei, dass diese strukturellen Veränderungen des eingeschlossenen Wassers im MXene einen reversiblen Phasenübergang bewirken: vom Metall zum Halbleiter. Dies könnte die Entwicklung neuartiger Bauelemente oder Sensoren auf Basis von MXenen ermöglichen.
  • Lithium-Schwefel-Batterien mit wenig Elektrolyt: Problemzonen identifiziert
    Science Highlight
    12.08.2025
    Lithium-Schwefel-Batterien mit wenig Elektrolyt: Problemzonen identifiziert
    Mit einer zerstörungsfreien Methode hat ein Team am HZB erstmals Lithium-Schwefel-Batterien im praktischen Pouchzellenformat untersucht, die mit besonders wenig Elektrolyt-Flüssigkeit auskommen. Mit operando Neutronentomographie konnten sie in Echtzeit visualisieren, wie sich der flüssige Elektrolyt während des Ladens und Entladens über mehrere Schichten verteilt und die Elektroden benetzt. Diese Erkenntnisse liefern wertvolle Einblicke in die Mechanismen, die zum Versagen der Batterie führen können, und sind hilfreich für die Entwicklung kompakter Li-S-Batterien mit hoher Energiedichte.