Beschleunigerphysik: Erster Elektronenstrahl im SEALab

Auf dem Bildschirm ist der „Beweis“ zu sehen: Der kleine Fleck ist der Elektronenstrahl. Die „große Wolke“ links davon entsteht durch die Reflektion des Laserstrahls von der Photokathode.

Auf dem Bildschirm ist der „Beweis“ zu sehen: Der kleine Fleck ist der Elektronenstrahl. Die „große Wolke“ links davon entsteht durch die Reflektion des Laserstrahls von der Photokathode. © SEALab/HZB

Das SEALab-Team hat diesen Durchbruch nach jahrelanger Arbeit erreicht. Im Bild das Commissioning Team.

Das SEALab-Team hat diesen Durchbruch nach jahrelanger Arbeit erreicht. Im Bild das Commissioning Team. © SEALab/HZB

Weltweit zum ersten Mal hat das SEALab-Team am HZB in einem supraleitenden Hochfrequenzbeschleuniger (SRF Photoinjektor) einen Elektronenstrahl aus einer Multi-Alkali-Photokathode (Na-K-Sb) erzeugt und auf relativistische Energien beschleunigt. Dies ist ein echter Durchbruch und eröffnet neue Optionen für die Beschleunigerphysik.

 

Dieser Erfolg ebnet den Weg für die Weiterentwicklung von supraleitenden Hochfrequenzbeschleunigern (SRF Photoinjektoren) für hochbrillante Elektronenquellen. Die Errungenschaft birgt ein erhebliches Potenzial für Anwendungen in Freie-Elektronen-Lasern, Beschleunigern der ERL-Klasse (Energy Recovery Linac) und der Nutzung in den Bereichen Detektorentwicklung und Ultraschnelle Elektronenstreuexperimente (UED).

Möglich wurde diese Leistung durch jahrelange engagierte Arbeit, zunächst im Rahmen des bERLinPro-Projekts, dann im SEALab-Team. Dabei gab es zahlreiche Herausforderungen, darunter Verzögerungen durch die COVID-19-Pandemie und den Cyberangriff. Dennoch hat das Team große Fortschritte gemacht. Der erfolgreiche Test erzeugte einen mittleren Strom im Mikroampere-Bereich bei einer Wiederholrate von 1 MHz, was die Möglichkeiten der Natrium-basierten Photokathode in einem SRF System demonstriert. 

Axel Neumann, Projektleiter von SEALab, betont: "Dieser große Erfolg ist das Ergebnis vieler engagierter Einzelpersonen, die in den letzten Jahren unter oft hohem Stress an bERLinPro und SEALab mitgearbeitet haben. Wir danken auch allen ehemaligen Teammitgliedern, die an dem ursprünglichen Projekt mitgewirkt haben."

Thorsten Kamps, stellvertretender Projektleiter, sieht nun die Früchte der intensiven Arbeiten für den Photoinjektor: “Wir haben die Präparation und Charakterisierung von Photokathoden in den letzten Jahren komplett auf neue Beine gestellt und sehen nun den Erfolg. Das wird signifikanten Einfluss auf ähnliche Projekte haben.”

Mit dem erfolgreichen Test hat das SEALab-Team bewiesen, dass es mit einer robusten Multi-Alkali  Photoemissionsquelle möglich ist, einen Elektronenstrahl in einem SRF-Photoinjektor auf relativistische Energien zu beschleunigen, und zwar mit einer hohen Wiederholrate. Diese Erkenntnisse könnten dazu beitragen, die Leistung von Elektroneninjektoren der nächsten Generation weiter zu verbessern . Das SEALab-Team wird nun auch die unterschiedlichen Strahlparameter untersuchen und so die Möglichkeiten der SRF-Photoinjektoren erweitern.

 

red.

  • Link kopieren

Das könnte Sie auch interessieren

  • Ein innerer Kompass für Meereslebewesen im Paläozän
    Science Highlight
    20.10.2025
    Ein innerer Kompass für Meereslebewesen im Paläozän
    Vor Jahrmillionen produzierten einige Meeresorganismen mysteriöse Magnetpartikel von ungewöhnlicher Größe, die heute als Fossilien in Sedimenten zu finden sind. Nun ist es einem internationalen Team gelungen, die magnetischen Domänen auf einem dieser „Riesenmagnetfossilien” mit einer raffinierten Methode an der Diamond-Röntgenquelle zu kartieren. Ihre Analyse zeigt, dass diese Partikel es den Organismen ermöglicht haben könnten, winzige Schwankungen sowohl in der Richtung als auch in der Intensität des Erdmagnetfelds wahrzunehmen. Dadurch konnten sie sich verorten und über den Ozean navigieren. Die neue Methode eignet sich auch, um zu testen, ob bestimmte Eisenoxidpartikel in Marsproben tatsächlich biogenen Ursprungs sind.
  • Was vibrierende Moleküle über die Zellbiologie verraten
    Science Highlight
    16.10.2025
    Was vibrierende Moleküle über die Zellbiologie verraten
    Mit Infrarot-Vibrationsspektroskopie an BESSY II lassen sich hochaufgelöste Karten von Molekülen in lebenden Zellen und Zellorganellen in ihrer natürlichen wässrigen Umgebung erstellen, zeigt eine neue Studie von einem Team aus HZB und Humboldt-Universität zu Berlin. Die Nano-IR-Spektroskopie mit SNOM an der IRIS-Beamline eignet sich, um winzige biologische Proben zu untersuchen und Infrarotbilder der Molekülschwingungen mit Nanometer-Auflösung zu erzeugen. Es ist sogar möglich, 3D-Informationen, also Infrarot-Tomogramme, aufzuzeichnen. Um das Verfahren zu testen, hat das Team Fibroblasten auf einer hochtransparenten SiC-Membran gezüchtet und in vivo untersucht. Die Methode ermöglicht neue Einblicke in die Zellbiologie.
  • Neue Methode wirft Licht auf Nanomaterialien: Wie MXene wirklich funktionieren
    Science Highlight
    01.10.2025
    Neue Methode wirft Licht auf Nanomaterialien: Wie MXene wirklich funktionieren
    Forschende haben erstmals die tatsächlichen Eigenschaften einzelner MXene-Flocken gemessen – einem spannenden neuen Nanomaterial mit Potenzial für bessere Batterien, flexible Elektronik und Geräte für saubere Energie. Mithilfe einer neuartigen lichtbasierten Technik – der spektroskopischen Mikroellipsometrie – haben sie herausgefunden, wie sich MXene auf der Ebene einzelner Flocken verhalten und dabei Veränderungen in der Leitfähigkeit und der optischen Reaktion aufgedeckt, die zuvor bei der Untersuchung gestapelter Schichten verborgen geblieben waren. Dieser Durchbruch liefert grundlegendes Wissen und Werkzeuge für die Entwicklung intelligenterer und effizienterer Technologien auf Basis von MXenen.