Solar cells on moon glass for a future base on the moon

Components of a Moon solar cell.

Components of a Moon solar cell. © Felix Lang.

Future settlements on the moon will need energy, which could be supplied by photovoltaics. However, launching material into space is expensive – transporting one kilogram to the moon costs one million euros. But there are also resources on the moon that can be used. A research team led by Dr. Felix Lang of the University of Potsdam and Dr. Stefan Linke of the Technical University of Berlin have now produced the required glass from ‘moon dust’ (regolith) and coated it with perovskite. This could save up to 99 percent of the weight needed to produce PV modules on the moon. The team tested the radiation tolerance of the solar cells at the proton accelerator of the HZB.

“The highlight of our study is that we can extract the glass we need for our solar cells directly from the lunar regolith without any processing,” says project leader Felix Lang, who leads a junior research group at the Institute of Physics and Astronomy, funded by a Freigeist-Fellowship of the VolkswagenStiftung.

The solar cells tested by the researchers have a layered structure, with the substrate and cover layer consisting of Moon glass and the intermediate layer of perovskite. “These solar cells require ultrathin absorber layers of 500 to 800 nanometers only, allowing the fabrication of 400 square meter solar cells with just one kilogram of perovskite raw material brought from Earth,” Lang summarizes.

Lang emphasizes the amazing stability of the solar cells produced against solar and cosmic radiation – an essential prerequisite for a stable energy supply on the moon. The radiation tolerance was tested at the Proton accelerator at HZB in the team of Prof. Andrea Denker.

Read the full text at the website of University of Potsdam:

https://www.uni-potsdam.de/en/headlines-and-featured-stories/detail/2025-04-03-solarzellen-auf-mondglas-photovoltaik-koennte-die-energie-fuer-eine-zukuenftige-basis-au

red./Uni Potsdam

  • Copy link

You might also be interested in

  • Green fabrication of hybrid materials as highly sensitive X-ray detectors
    Science Highlight
    08.05.2025
    Green fabrication of hybrid materials as highly sensitive X-ray detectors
    New bismuth-based organic-inorganic hybrid materials show exceptional sensitivity and long-term stability as X-ray detectors, significantly more sensitive than commercial X-ray detectors. In addition, these materials can be produced without solvents by ball milling, a mechanochemical synthesis process that is environmentally friendly and scalable. More sensitive detectors would allow for a reduction in the radiation exposure during X-ray examinations.
  • Electrical energy storage: BAM, HZB, and HU Berlin plan joint Berlin Battery Lab
    News
    07.05.2025
    Electrical energy storage: BAM, HZB, and HU Berlin plan joint Berlin Battery Lab
    The Federal Institute for Materials Research and Testing (BAM), the Helmholtz-Zentrum Berlin (HZB), and Humboldt University of Berlin (HU Berlin) have signed a memorandum of understanding (MoU) to establish the Berlin Battery Lab. The lab will pool the expertise of the three institutions to advance the development of sustainable battery technologies. The joint research infrastructure will also be open to industry for pioneering projects in this field.
  • BESSY II: Insight into ultrafast spin processes with femtoslicing
    Science Highlight
    05.05.2025
    BESSY II: Insight into ultrafast spin processes with femtoslicing
    An international team has succeeded at BESSY II for the first time to elucidate how ultrafast spin-polarised current pulses can be characterised by measuring the ultrafast demagnetisation in a magnetic layer system within the first hundreds of femtoseconds. The findings are useful for the development of spintronic devices that enable faster and more energy-efficient information processing and storage. The collaboration involved teams from the University of Strasbourg, HZB, Uppsala University and several other universities.