Neues Instrument bei BESSY II: Die OÆSE-Endstation in EMIL

Das neue Instrument wurde im EMIL-Labor aufgebaut.

Das neue Instrument wurde im EMIL-Labor aufgebaut. © R. Garcia-Diez /HZB

Das Schema zeigt den Aufbau der Endstation, einschließlich der Probenumgebung, der Analysekammer und des Strahlengangs.

Das Schema zeigt den Aufbau der Endstation, einschließlich der Probenumgebung, der Analysekammer und des Strahlengangs. © HZB

An BESSY II steht nun ein neues Instrument zur Untersuchung von Katalysatormaterialien, Batterieelektroden und anderen Energiesystemen zur Verfügung: die Operando Absorption and Emission Spectroscopy on EMIL (OÆSE) Endstation im Energy Materials In-situ Laboratory Berlin (EMIL). Ein Team um Raul Garcia-Diez und Marcus Bär hat die Leistungsfähigkeit des Instruments an elektrochemisch abgeschiedenem Kupfer demonstriert.

Solarzellen, Katalysatoren und Batterien werden als Energiematerialien bezeichnet, weil sie Energie umwandeln oder speichern. Ihre Funktionalität basiert auf komplexen chemischen oder physikalischen Prozessen. Um diese Funktionalitäten zu verbessern, ist es entscheidend, die Prozesse zu verstehen, idealerweise während sie ablaufen, also durch In-situ- und operando-Untersuchungen. Eine neue Versuchsstation ermöglicht nun entsprechende Experimente. Sie steht im Energy Materials In-situ Laboratory Berlin (EMIL) an der Synchrotronanlage BESSY II.

Die „operando Absorption and Emission Spectroscopy on EMIL“ (OÆSE) liefert detaillierte Einblicke in die elektronischen und chemischen Strukturen von Materialien und Grenzflächen sowie deren Veränderungen während (elektro-)chemischer Prozesse mittels Röntgenabsorptionsspektroskopie (XAS) und Emissionsspektroskopie (XES).

Das Herzstück der OÆSE-Endstation ist eine modulare und flexible In-situ/Operando-Probenumgebung, die speziell auf die spezifischen Forschungsfragen für jedes Energiematerial zugeschnitten ist und sich an unterschiedliche Experimente anpassen lässt.

Um die Fähigkeiten der OÆSE-Endstation zu demonstrieren, untersuchte das Team um Raul Garcia-Diez und Marcus Bär in situ die elektrochemische Abscheidung von Kupfer aus einem wässrigen CuSO4-Elektrolyten mit weicher und harter Röntgenabsorptionsspektroskopie. Die Fallstudie zeigt, dass die neue Endstation wertvolle Einblicke in dynamische elektrochemische Prozesse bietet und somit ein besseres Verständnis komplexer elektrochemischer Systeme ermöglicht.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Poröse organische Struktur verbessert Lithium-Schwefel-Batterien
    Science Highlight
    15.09.2025
    Poröse organische Struktur verbessert Lithium-Schwefel-Batterien
    Ein neu entwickeltes Material kann die Kapazität und Stabilität von Lithium-Schwefel-Batterien deutlich verbessern. Es basiert auf Polymeren, die ein Gerüst mit offenen Poren bilden. In der Fachsprache werden sie radikale kationische kovalente organische Gerüste oder COFs genannt. In den Poren finden katalytisch beschleunigte Reaktionen statt, die Polysulfide einfangen, die ansonsten die Lebensdauer der Batterie verkürzen würden. Einige der experimentellen Analysen wurden an der BAMline an BESSY II durchgeführt. Prof. Yan Lu, HZB, und Prof. Arne Thomas, Technische Universität Berlin, haben diese Arbeit gemeinsam vorangetrieben.
  • Wie sich Nanokatalysatoren während der Katalyse verändern
    Science Highlight
    10.09.2025
    Wie sich Nanokatalysatoren während der Katalyse verändern
    Mit der Kombination aus Spektromikroskopie an BESSY II und mikroskopischen Analysen am NanoLab von DESY gelang es einem Team, neue Einblicke in das chemische Verhalten von Nanokatalysatoren während der Katalyse zu gewinnen. Die Nanopartikel bestanden aus einem Platin-Kern mit einer Rhodium-Schale. Diese Konfiguration ermöglicht es, strukturelle Änderungen beispielsweise in Rhodium-Platin-Katalysatoren für die Emissionskontrolle besser zu verstehen. Die Ergebnisse zeigen, dass Rhodium in der Schale unter typischen katalytischen Bedingungen teilweise ins Innere der Nanopartikel diffundieren kann. Dabei verbleibt jedoch der größte Teil an der Oberfläche und oxidiert. Dieser Prozess ist stark von der Oberflächenorientierung der Nanopartikelfacetten abhängig.
  • Metalloxide: Wie Lichtpulse Elektronen in Bewegung setzen
    Science Highlight
    08.09.2025
    Metalloxide: Wie Lichtpulse Elektronen in Bewegung setzen
    Metalloxide kommen in der Natur reichlich vor und spielen eine zentrale Rolle in Technologien wie der Photokatalyse und der Photovoltaik. In den meisten Metalloxiden ist jedoch aufgrund der starken Abstoßung zwischen Elektronen benachbarter Metallatome die elektrische Leitfähigkeit sehr gering. Ein Team am HZB hat nun zusammen mit Partnerinstitutionen gezeigt, dass Lichtimpulse diese Abstoßungskräfte vorübergehend schwächen können. Dadurch sinkt die Energie, die für die Elektronenbeweglichkeit erforderlich ist, so dass ein metallähnliches Verhalten entsteht. Diese Entdeckung bietet eine neue Möglichkeit, Materialeigenschaften mit Licht zu manipulieren, und birgt ein hohes Potenzial für effizientere lichtbasierte Bauelemente.