Perowskit-Forschung: Hybridmaterialien als hochempfindliche Röntgendetektoren

Das polykristalline Pulver wurde zu einem dichten Pellet mit einem Durchmesser von 10 mm gepresst.

Das polykristalline Pulver wurde zu einem dichten Pellet mit einem Durchmesser von 10 mm gepresst. © HZB

Das Pulver wird mit Kugeln fein gemahlen und dann zu einem kompakten Pellet gepresst, das als Detektor eingesetzt werden kann.

Das Pulver wird mit Kugeln fein gemahlen und dann zu einem kompakten Pellet gepresst, das als Detektor eingesetzt werden kann. © BAM/HZB

Neue organisch-anorganische Hybridmaterialien auf Basis von Wismut sind hervorragend als Röntgendetektoren geeignet, sie sind deutlich empfindlicher als handelsübliche Röntgendetektoren und langzeitstabil. Darüber hinaus können sie ohne Lösungsmittel durch Kugelmahlen hergestellt werden, einem umweltfreundlichen Syntheseverfahren, das auch in der Industrie genutzt wird. Empfindlichere Detektoren würden die Strahlenbelastung bei Röntgenuntersuchungen erheblich reduzieren.

Die Röntgenbildgebung ist in der medizinischen Diagnostik und Materialforschung unverzichtbar. Um ein Bild zu erzeugen, wandelt ein Detektor die Röntgenstrahlen, die das Objekt durchdrungen haben, von einem Detektor in elektrische Signale um. Je empfindlicher diese Detektoren reagieren, desto niedriger kann die Strahlenbelastung für die Probe ausfallen. Insbesondere in medizinischen Anwendungen wäre dies sehr günstig.

Inspiriert von Perowskit-Materialien

Einem Team um die Röntgendetektor-Expertin Prof. Olena Maslyanchuk am HZB ist es nun gelungen, die Eignung von zwei neuen Materialien als hocheffiziente Röntgendetektoren nachzuweisen. Es handelt sich dabei um organisch-anorganische Hybridmaterialien, inspiriert von den Halid-Perowskiten, die für optoelektronische Anwendungen interessant sind,  [(CH3CH2)3S]6Bi8I30 und [(CH3CH2)3S]AgBiI5, beide mit dem Element Wismut. Sie wurden zuerst von Dr. Allan Starkholm für seine Promotion am Royal Institute of Technology, Stockholm, untersucht, der jetzt als Postdoc am HZB forscht.

Ideale Eigenschaften für Röntgendetektion

„Sie sind ideal für die Röntgendetektion“, sagt Starkholm und begründet dies mit den hohen Ordnungszahlen, geeigneten Bandlücken und einzigartigen strukturellen Eigenschaften: „Sie enthalten stabile Sulfoniumkationen, die eine bessere Langlebigkeit im Einsatz versprechen, anstelle der traditionell verwendeten hygroskopischen Ammoniumkationen.“

Umweltfreundliche Herstellung

In Zusammenarbeit mit der BAM-Expertin Dr. Franziska Emmerling wurde anschließend ein besonders umweltfreundliches Herstellungsverfahren genutzt, das ohne Lösungsmittel auskommt: das Kugelmahlen. Dabei entstehen polykristalline Pulver, die zu dichten Pellets gepresst werden. Diese Verfahren sind auch in der Industrie etabliert.

Bis zu 50mal empfindlicher

Getestet wurden die Pellets als so genannte Flachdetektoren für Röntgenstrahlung in der Gruppe von Dr. Felix Lang an der Universität Potsdam. „Die Ergebnisse zeigen, dass sie selbst über lange Zeiträume besser funktionieren als derzeit handelsübliche Detektoren“, sagt Starkholm. „Tatsächlich weisen sie eine um bis zu zwei Größenordnungen höhere Empfindlichkeit auf als handelsübliche Materialien wie amorphes Selen oder CdZnTe – und können fast 50-mal niedrigere Röntgendosen detektieren“, sagt Starkholm.

Langzeitstabilität

Neben umfangreichen Analysen im Labor konnte das Team die Proben auch an der KMC-3-XPP-Beamline der BESSY II untersuchen. Die Detektoren zeigten bei längerer gepulster Röntgenbestrahlung unter hohem Photonenfluss eine stabile Reaktion, ohne dass nach der Bestrahlung eine messbare Leistungsminderung festgestellt wurde, was die Robustheit des Materials belegt.

Ausblick: Technologietransfer

„Diese Ergebnisse zeigen, wie spannend es sein kann, die Forschung an Hybridmaterialien am HZB über die Photovoltaik hinaus auszuweiten, sowohl innerhalb als auch außerhalb des Perowskitbereichs. Unsere Studie belegt, dass diese völlig neuen Materialien auf Wismutbasis hervorragende Kandidaten für die Röntgendetektion sind. Mit empfindlicheren Röntgendetektoren könnte die Strahlenbelastung bei der Röntgenbildgebung deutlich reduziert werden“, sagt Olena Maslyanchuk.

Der nächste Schritt ist der Technologietransfer. „Es gibt so viele spannende Unternehmen in Adlershof, mit denen wir zusammenarbeiten könnten, um die Entwicklung solcher Röntgendetektoren zu optimieren“, sagt Starkholm.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Science Highlight
    21.10.2025
    BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Erstmals ist es einem Team an BESSY II gelungen, experimentell eindimensionale elektronische Eigenschaften in einem Material nachzuweisen. Die Proben bestanden aus kurzen Ketten aus Phosphoratomen, die sich auf einem Silbersubstrat selbst organisiert in bestimmten Winkeln bilden. Durch eine raffinierte Auswertung gelang es, die Beiträge von unterschiedlich ausgerichteten Ketten voneinander zu trennen und zu zeigen, dass die elektronischen Eigenschaften tatsächlich einen eindimensionalen Charakter besitzen. Berechnungen zeigten darüber hinaus, dass ein spannender Phasenübergang zu erwarten ist. Während das Material aus einzelnen Ketten halbleitend ist, wäre eine sehr dichte Kettenstruktur metallisch.
  • Ein innerer Kompass für Meereslebewesen im Paläozän
    Science Highlight
    20.10.2025
    Ein innerer Kompass für Meereslebewesen im Paläozän
    Vor Jahrmillionen produzierten einige Meeresorganismen mysteriöse Magnetpartikel von ungewöhnlicher Größe, die heute als Fossilien in Sedimenten zu finden sind. Nun ist es einem internationalen Team gelungen, die magnetischen Domänen auf einem dieser „Riesenmagnetfossilien” mit einer raffinierten Methode an der Diamond-Röntgenquelle zu kartieren. Ihre Analyse zeigt, dass diese Partikel es den Organismen ermöglicht haben könnten, winzige Schwankungen sowohl in der Richtung als auch in der Intensität des Erdmagnetfelds wahrzunehmen. Dadurch konnten sie sich verorten und über den Ozean navigieren. Die neue Methode eignet sich auch, um zu testen, ob bestimmte Eisenoxidpartikel in Marsproben tatsächlich biogenen Ursprungs sind.
  • Was vibrierende Moleküle über die Zellbiologie verraten
    Science Highlight
    16.10.2025
    Was vibrierende Moleküle über die Zellbiologie verraten
    Mit Infrarot-Vibrationsspektroskopie an BESSY II lassen sich hochaufgelöste Karten von Molekülen in lebenden Zellen und Zellorganellen in ihrer natürlichen wässrigen Umgebung erstellen, zeigt eine neue Studie von einem Team aus HZB und Humboldt-Universität zu Berlin. Die Nano-IR-Spektroskopie mit SNOM an der IRIS-Beamline eignet sich, um winzige biologische Proben zu untersuchen und Infrarotbilder der Molekülschwingungen mit Nanometer-Auflösung zu erzeugen. Es ist sogar möglich, 3D-Informationen, also Infrarot-Tomogramme, aufzuzeichnen. Um das Verfahren zu testen, hat das Team Fibroblasten auf einer hochtransparenten SiC-Membran gezüchtet und in vivo untersucht. Die Methode ermöglicht neue Einblicke in die Zellbiologie.