Iridiumfreie Katalysatoren für die saure Wasserelektrolyse untersucht

Rasterelektronenmikroskopische Aufnahme eines Katalysators auf Kobaltbasis auf einem Fasersubstrat (Aufnahme nachträglich koloriert) und schematische Darstellung der operando-Materialcharakterisierung mittels diverser Techniken, dargestellt durch künstlich hinzugefügte Lichtstrahlen, Blasen und ansteigende Spektren.

Rasterelektronenmikroskopische Aufnahme eines Katalysators auf Kobaltbasis auf einem Fasersubstrat (Aufnahme nachträglich koloriert) und schematische Darstellung der operando-Materialcharakterisierung mittels diverser Techniken, dargestellt durch künstlich hinzugefügte Lichtstrahlen, Blasen und ansteigende Spektren. © Marc Tesch/MPI-CEC

Wasserstoff wird künftig eine wichtige Rolle spielen, als Brennstoff und als Rohstoff für die Industrie. Um jedoch relevante Mengen an Wasserstoff zu produzieren, muss Wasserelektrolyse im Multi-Gigawatt-Maßstab machbar werden. Ein Engpass sind die benötigten Katalysatoren, insbesondere Iridium ist ein extrem seltenes Element. Eine internationale Kooperation hat daher Iridiumfreie Katalysatoren für die saure Wasserelektrolyse untersucht, die auf dem Element Kobalt basieren. Durch Untersuchungen, unter anderem am LiXEdrom an der Berliner Röntgenquelle BESSY II, konnten sie Prozesse bei der Wasserelektrolyse in einem Kobalt-Eisen-Blei-Oxid-Material als Anode aufklären. Die Studie ist in Nature Energy publiziert.

Die Sauerstoffentwicklungsreaktion (OER) bei der Wasserelektrolyse benötigt besondere katalytische Unterstützung. Doch Iridium-Katalysatoren sind aufgrund des Preises und der limitierten Verfügbarkeit für einen Einsatz im großen Maßstab problematisch, es gilt also Alternativen zu finden.

Ein internationales Team unter der Leitung von Dr. Alexandr N. Simonov von der Monash University in Melbourne, Australien, hat nun die saure Sauerstoffentwicklungsreaktion an Kobalt-basierten Katalysatoren untersucht und dabei die Veränderungen an den aktiven Kobaltstellen aufgeklärt. Dafür setzten die Forschungsteams mehrere Methoden ein und kombinierten die Erkenntnisse zu einem neuen Bild.

Prozesse während der Katalyse

Die Stabilisierung der Katalysatoren während der OER umfasst das Zusammenspiel von Korrosions- und Oxidationsprozessen und gilt als Schlüssel zur Katalysatorentwicklung. „In dieser Studie haben wir aufgedeckt, dass die Korrosions- und Ablagerungsprozesse nicht direkt mit dem katalytischen Prozess gekoppelt sind, sondern parallel ablaufen“, sagt Dr. Marc Tesch vom Max-Planck-Institut für Chemische Energiekonversion, einer der Autoren der Studie. Die zeitaufgelösten Messungen zeigen außerdem, dass die Entwicklung des Katalysators zu einem stabilisierten aktiven Zustand kein schneller Prozess ist, sondern auf einer Zeitskala von Minuten abläuft. Die Röntgenspektroskopie zeigt, dass die katalytisch aktiven Kobaltstellen während der sauren OER einen Oxidationszustand höher als 3+ annehmen und keine Fernordnung aufweisen. Damit unterscheiden sie sich von zuvor beschriebenen Kobalt-μ-(Hydr)oxo-Strukturen, welche in neutraler und basischer Reaktionsumgebung vorliegen.

Internationale Zusammenarbeit unter Corona-Bedingungen

Ein wesentlicher Teil der Forschung wurde während der Corona-Pandemie am BESSY II durchgeführt, als internationale Reisen und der externe Zugang zur Synchrotronanlage stark eingeschränkt waren. „Daher war die Unterstützung durch das lokale Team am BESSY II besonders wichtig“, sagt Tesch.

Die Erkenntnisse sind hilfreich, um kostengünstige Anodenkatalysatoren auf Kobaltbasis für den Einsatz in Protonenaustausch-Wasserelektrolyseuren zu entwickeln.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Susanne Nies in EU-Beratergruppe zu Green Deal berufen
    Nachricht
    12.11.2025
    Susanne Nies in EU-Beratergruppe zu Green Deal berufen
    Dr. Susanne Nies leitet am HZB das Projekt Green Deal Ukraina, das den Aufbau eines nachhaltigen Energiesystems in der Ukraine unterstützt. Die Energieexpertin wurde nun auch in die wissenschaftliche Beratergruppe der Europäischen Kommission berufen, um im Zusammenhang mit der Netto-Null-Zielsetzung (DG GROW) regulatorische Belastungen aufzuzeigen und dazu zu beraten.
  • Die Zukunft der Korallen – Was Röntgenuntersuchungen zeigen können
    Interview
    12.11.2025
    Die Zukunft der Korallen – Was Röntgenuntersuchungen zeigen können
    In diesem Sommer war es in allen Medien. Angetrieben durch die Klimakrise haben nun auch die Ozeane einen kritischen Punkt überschritten, sie versauern immer mehr. Meeresschnecken zeigen bereits erste Schäden, aber die zunehmende Versauerung könnte auch die kalkhaltigen Skelettstrukturen von Korallen beeinträchtigen. Dabei leiden Korallen außerdem unter marinen Hitzewellen und Verschmutzung, die weltweit zur Korallenbleiche und zum Absterben ganzer Riffe führen. Wie genau wirkt sich die Versauerung auf die Skelettbildung aus?

    Die Meeresbiologin Prof. Dr. Tali Mass von der Universität Haifa, Israel, ist Expertin für Steinkorallen. Zusammen mit Prof. Dr. Paul Zaslansky, Experte für Röntgenbildgebung an der Charité Berlin, untersuchte sie an BESSY II die Skelettbildung bei Babykorallen, die unter verschiedenen pH-Bedingungen aufgezogen wurden. Antonia Rötger befragte die beiden Experten online zu ihrer aktuellen Studie und der Zukunft der Korallenriffe. 

  • Langzeit-Stabilität von Perowskit-Solarzellen deutlich gesteigert
    Science Highlight
    07.11.2025
    Langzeit-Stabilität von Perowskit-Solarzellen deutlich gesteigert
    Perowskit-Solarzellen sind kostengünstig in der Herstellung und liefern viel Leistung pro Fläche. Allerdings sind sie bisher noch nicht stabil genug für den Langzeit-Einsatz. Nun hat ein internationales Team unter der Leitung von Prof. Dr. Antonio Abate durch eine neuartige Beschichtung der Grenzfläche zwischen Perowskitschicht und dem Top-Kontakt die Stabilität drastisch erhöht. Dabei stieg der Wirkungsgrad auf knapp 27 Prozent, was dem aktuellen state-of-the-art entspricht. Dieser hohe Wirkungsgrad nahm auch nach 1.200 Stunden im Dauerbetrieb nicht ab. An der Studie waren Forschungsteams aus China, Italien, der Schweiz und Deutschland beteiligt. Sie wurde in Nature Photonics veröffentlicht.