Was vibrierende Moleküle über die Zellbiologie verraten

Die Zelle wird auf einer Si-C-Membran gezüchtet und in ihr flüssiges Medium eingebettet. Die Spitze des s-SNOM erfasst Schwingungen, die durch Infrarotlicht von BESSY II ausgelöst werden.

Die Zelle wird auf einer Si-C-Membran gezüchtet und in ihr flüssiges Medium eingebettet. Die Spitze des s-SNOM erfasst Schwingungen, die durch Infrarotlicht von BESSY II ausgelöst werden. © A. Veber/HZB

Das mikroskopische Bild (links) und die gewonnenen IR-Spektren enthalten präzise Informationen über relevante Moleküle und molekulare Prozesse innerhalb der Zelle.

Das mikroskopische Bild (links) und die gewonnenen IR-Spektren enthalten präzise Informationen über relevante Moleküle und molekulare Prozesse innerhalb der Zelle. © A. Veber/HZB

Mit Infrarot-Vibrationsspektroskopie an BESSY II lassen sich hochaufgelöste Karten von Molekülen in lebenden Zellen und Zellorganellen in ihrer natürlichen wässrigen Umgebung erstellen, zeigt eine neue Studie von einem Team aus HZB und Humboldt-Universität zu Berlin. Die Nano-IR-Spektroskopie mit SNOM an der IRIS-Beamline eignet sich, um winzige biologische Proben zu untersuchen und Infrarotbilder der Molekülschwingungen mit Nanometer-Auflösung zu erzeugen. Es ist sogar möglich, 3D-Informationen, also Infrarot-Tomogramme, aufzuzeichnen. Um das Verfahren zu testen, hat das Team Fibroblasten auf einer hochtransparenten SiC-Membran gezüchtet und in vivo untersucht. Die Methode ermöglicht neue Einblicke in die Zellbiologie.

Die Infrarot-Mikrospektroskopie ist eine zerstörungsfreie Methode, um biologische Gewebe oder Zellen zu charakterisieren. Mit Hilfe eines infrarotstreuenden Nahfeld-Optikmikroskops (s-SNOM) reichen selbst kleinste Probenvolumina aus, um reichhaltige Informationen über die molekulare Zusammensetzung, Struktur und Wechselwirkungen mit einer räumlichen Auflösung von bis zu 10 nm zu gewinnen.

Test mit Fibroblasten

Die IRIS-Beamline an der Synchrotronquelle BESSY II liefert das für diese Methode erforderliche hochbrillante Infrarotlicht. In einer aktuellen Studie unter der Leitung von Dr. Alexander Veber (HZB) und Prof. Dr. Janina Kneipp (HUB) an BESSY II hat nun ein Team die Wirksamkeit dieser Methode demonstriert, indem sie die Schwingungsspektren lebender Fibroblasten-Zellen in Flüssigkeiten aufzeichneten. Fibroblasten sind für den Aufbau von Bindegewebe und die Produktion von Kollagen verantwortlich.

Proteine und andere Moleküle

Dabei verwendete das Team erstmals eine ultradünne Siliziumkarbidmembran als biokompatible Schutzschicht zwischen den Zellen und ihrem flüssigen Medium und der Sondenspitze des s-SNOM-basierten Infrarot-Nanoskops, das die Schwingungen erfasst.

„Wir konnten nicht nur den Zellkern und die Zellorganellen sichtbar machen, sondern es gelang uns auch, anhand der erfassten Schwingungsspektren die einzelnen Beiträge von Proteinen, Nukleinsäuren, Kohlenhydraten und Membranlipiden auszulesen“, sagt Veber. Dies war möglich, weil die Siliziumkarbidmembran für Infrarotlicht hochtransparent ist. Die beobachtete Zellstruktur im Nanobereich stimmt mit der bekannten Heterogenität von Zellen überein und bestätigt damit die neue Methode.

3D-Informationen

Sie konnten außerdem durch die Variation von Messparametern steuern, wie tief in der Probe die Signale erfasst werden. „So konnten wir verschiedenen Schichten untersuchen. Dies ebnet den Weg für die Infrarot-Nanotomographie von Zellen, d. h. eine detaillierte 3D-Visualisierung der Zellstruktur und -zusammensetzung“, sagt Veber. Standardisierte 2D- und 3D-Schwingungsbildgebung und -spektroskopie könnten schnellere Fortschritte in der Biophysik und bei Nanomaterialien ermöglichen.

„Diese Methode erlaubt es, biologische Proben und Flüssig-Fest-Grenzflächen viel genauer zu analysieren, als dies bisher möglich war“, sagt Veber. „Im Prinzip könnten wir damit jede Art von Zellen untersuchen, auch Krebszellen.“ Die neue Entwicklung steht ab sofort auch allen Nutzergruppen der IRIS-Beamline zur Verfügung.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Gute Aussichten für Zinn-Perowskit-Solarzellen
    Science Highlight
    03.12.2025
    Gute Aussichten für Zinn-Perowskit-Solarzellen
    Perowskit-Solarzellen gelten weithin als die Photovoltaik-Technologie der nächsten Generation. Allerdings sind Perowskit-Halbleiter langfristig noch nicht stabil genug für den breiten kommerziellen Einsatz. Ein Grund dafür sind wandernde Ionen, die mit der Zeit dazu führen, dass das Halbleitermaterial degradiert. Ein Team des HZB und der Universität Potsdam hat nun die Ionendichte in vier verschiedenen Perowskit-Halbleitern untersucht und dabei erhebliche Unterschiede festgestellt. Eine besonders geringe Ionendichte wiesen Zinn-Perowskit-Halbleiter auf, die mit einem alternativen Lösungsmittel hergestellt wurden – hier betrug die Ionendichte nur ein Zehntel im Vergleich zu Blei-Perowskit-Halbleitern. Damit könnten Perowskite auf Zinnbasis ein besonders großes Potenzial zur Herstellung von umweltfreundlichen und besonders stabilen Solarzellen besitzen.
  • Synchrotronstrahlungsquellen: Werkzeugkästen für Quantentechnologien
    Science Highlight
    01.12.2025
    Synchrotronstrahlungsquellen: Werkzeugkästen für Quantentechnologien
    Synchrotronstrahlungsquellen erzeugen hochbrillante Lichtpulse, von Infrarot bis zu harter Röntgenstrahlung, mit denen sich tiefe Einblicke in komplexe Materialien gewinnen lassen. Ein internationales Team hat nun im Fachjournal Advanced Functional Materials einen Überblick über Synchrotronmethoden für die Weiterentwicklung von Quantentechnologien veröffentlicht: Anhand konkreter Beispiele zeigen sie, wie diese einzigartigen Werkzeuge dazu beitragen können, das Potenzial von Quantentechnologien wie z. B. Quantencomputing zu erschließen, Produktionsbarrieren zu überwinden und den Weg für zukünftige Durchbrüche zu ebnen.
  • Wie Karbonate die Umwandlung von CO2 in Kraftstoff beeinflussen
    Science Highlight
    25.11.2025
    Wie Karbonate die Umwandlung von CO2 in Kraftstoff beeinflussen
    Ein Forschungsteam vom Helmholtz Zentrum Berlin (HZB) und dem Fritz-Haber-Institut der Max-Planck-Gesellschaft (FHI) hat herausgefunden, wie Karbonatmoleküle die Umwandlung von CO2 in nützliche Kraftstoffe durch Gold-Elektrokatalysatoren beeinflussen. Ihre Studie beleuchtet, welche molekularen Mechanismen bei der CO2-Elektrokatalyse und der Wasserstoffentwicklung eine Rolle spielen und zeigt Strategien zur Verbesserung der Energieeffizienz und der Selektivität der katalytischen Reaktion auf.