Open Access Version

Abstract:
Hybrid organic-inorganic perovskites are one of the most promising material classes for photovoltaic energy conversion. In solar cells, the perovskite absorber is sandwiched between nand p-type contact layers which selectively transport electrons and holes to the cell’s cathode and anode, respectively. This thesis aims to advance contact layers in perovskite solar cells and unravel the impact of interface and contact properties on the device performance. Further, the contact materials are applied in monolithic perovskite-silicon heterojunction (SHJ) tandem solar cells, which can overcome the single junction efficiency limits and attract increasing attention. Therefore, all contact layers must be highly transparent to foster light harvesting in the tandem solar cell design. Besides, the SHJ device restricts processing temperatures for the selective contacts to below 200°C. A comparative study of various electron selective contact materials, all processed below 180°C, in n-i-p type perovskite solar cells highlights that selective contacts and their interfaces to the absorber govern the overall device performance. Combining fullerenes and metal-oxides in a TiO2/PC60BM (phenyl-C60-butyric acid methyl ester) double-layer contact allows to merge good charge extraction with minimized interface recombination. The layer sequence thereby achieved high stabilized solar cell performances up to 18.0% and negligible current-voltage hysteresis, an otherwise pronounced phenomenon in this device design. Double-layer structures are therefore emphasized as a general concept to establish efficient and highly selective contacts. Based on this success, the concept to combine desired properties of different materials is transferred to the p-type contact. Here, a mixture of the small molecule Spiro-OMeTAD [2,2’,7,7’- tetrakis(N,N-di-p-methoxyphenylamine)-9,9’-spirobifluoren] and the doped polymer PEDOT [poly(3,4-ethylenedioxythiophene)] is presented as a novel hole selective contact. PEDOT thereby remarkably suppresses charge recombination at the perovskite surface, allowing an increase of quasi-Fermi level splitting in the absorber. Further, the addition of Spiro-OMeTAD into the PEDOT layer is shown to enhance charge extraction at the interface and allow high efficiencies up to 16.8%. Finally, the knowledge on contact properties is applied to monolithic perovskite-SHJ tandem solar cells. The main goal is to optimize the top contact stack of doped Spiro- OMeTAD/molybdenum oxide(MoOx)/ITO towards higher transparency by two different routes. First, fine-tuning of the ITO deposition to mitigate chemical reduction of MoOx and increase the transmittance of MoOx/ITO stacks by 25%. Second, replacing Spiro-OMeTAD with the alternative hole transport materials PEDOT/Spiro-OMeTAD mixtures, CuSCN or PTAA [poly(triaryl amine)]. Experimental results determine layer thickness constrains and validate optical simulations, which subsequently allow to realistically estimate the respective tandem device performances. As a result, PTAA represents the most promising replacement for Spiro- OMeTAD, with a projected increase of the optimum tandem device efficiency for the herein used architecture by 2.9% relative to 26.5% absolute. The results also reveal general guidelines for further performance gains of the technology.