• Hofmann, T.; Wallacher, D.; Perlich, J.; Vayalil, S.K.; Huber, P.: Formation of Periodically Arranged Nanobubbles in Mesopores: Capillary Bridge Formation and Cavitation during Sorption and Solidification in an Hierarchical Porous SBA-15 Matrix. Langmuir 32 (2016), p. 2928-2936

10.1021/acs.langmuir.5b04560

Abstract:
We report synchrotron-based small-angle X-ray scattering experiments on a template-grown porous silica matrix (Santa Barbara Amorphous-15) upon in situ sorption of fluorinated pentane C5F12 along with volumetric gas sorption isotherm measurements. Within the mean-field model of Saam and Cole for vapor condensation in cylindrical pores, a nitrogen and C5F12 sorption isotherm is well described by a bimodal pore radius distribution dominated by meso- and micropores with 3.4 and 1.6 nm mean radius, respectively. In the scattering experiments, two different periodicities become evident. One of them (d1 = 11.5 nm) reflects the next nearest neighbor distance in a 2D-hexagonal lattice of tubular mesopores. A second periodicity (d2 = 11.4 nm) found during in situ sorption and freezing experiments is traced back to a superstructure along the cylindrical mesopores. It is compatible with periodic pore corrugations found in electron tomograms of empty SBA-15 by Gommes et al. (Chem. Mater. 2009, 21, 1311−1317). A Rayleigh−Plateau instability occurring at the cylindrical blockcopolymer micelles characteristic of the SBA-15 templating process quantitatively accounts for the superstructure and thus the spatial periodicity of the pore wall corrugation. The consequences of this peculiar morphological feature on the spatial arrangement of C5F12, in particular the formation of periodically arranged nanobubbles (or voids) upon adsorption, desorption, and freezing of liquids, are discussed in terms of capillary bridge formation and cavitation in tubular but periodically corrugated pores.