Wie Kreisel auf atomarer Ebene miteinander wechselwirken

Prof. A. F&ouml;hlisch und Dr. E. Suljoti bei der Arbeit an der<br>Undulatorbeamline UE52-PGM bei BESSY II.

Prof. A. Föhlisch und Dr. E. Suljoti bei der Arbeit an der
Undulatorbeamline UE52-PGM bei BESSY II.

Die Wechselwirkungen zwischen Elektronen und dem Atomgerüst in einem Festkörper sind die Grundlage von Materialeigenschaften, die eine zunehmend wichtige technologische Rolle spielen. Dazu gehört zum Beispiel das schnelle Schalten magnetischer Medien, wie es etwa für die Speicherung von Daten auf Computerfestplatten erforderlich ist.  Diesen Vorgang untersuchen und optimieren Wissenschaftler derzeit im Labor anhand der ultraschnellen Demagnetisierung von ferromagnetischen Schichtsystemen. Um solche Materialsysteme weiter optimieren zu können, müssen Wissenschaftler die Wechselwirkung zwischen Elektronen und Atomgitter detailliert verstehen. Forscher die am Helmholtz-Zentrum Berlin (HZB) und der Universität Hamburg tätig sind, haben nun einen wichtigen Teilprozess der Wechselwirkung der Elektronen mit den so genannten Phononen, den Quasiteilchen der atomaren Gitterschwingung, aufgeklärt. Dabei konnten sie zeigen, wie und vor allem mit welcher Effizienz Elektronen eine ihrer fundamentalsten Eigenschaften, den so genannten Drehimpuls, mit den Phononen austauschen können. Ihre Ergebnisse hat das Team um Professor Alexander Föhlisch, Leiter des HZB-Instituts für „Methoden und Instrumentierung der Synchrotronstrahlung“, und Professor Wilfried Wurth von der Universität Hamburg jetzt in der Fachzeitschrift „Physical Review Letters“ publiziert. Den Nachweis und die Quantifizierung dieses Effekts führten das Team an einem klassischen Modellsystem durch, dessen physikalische Eigenschaften sehr genau bekannt sind: Silizium. An der Synchrotronstrahlungsquelle BESSY II des HZB bestrahlten sie Siliziumkristalle mit Röntgenstrahlung und maßen dann hochpräzise die Energie der an der Probe gestreuten Lichtteilchen, der Photonen. Die Analyse der Ergebnisse dieser auch als resonante inelastische Röntgenstreuung bezeichneten Methode erlaubte es nun, die Wahrscheinlichkeit eines sogenannten Drehimpulstransfers zwischen Phonon und Elektron genau zu bestimmen. Der Effekt ist klein - in Silizium etwa 50 Mal kleiner als die bekannte dominierende klassische Elektronen-Phononen Wechselwirkung, bei der kein Drehimpuls übertragen werden kann –, weil die Phononen nur in seltenen ausgewählten Situationen zu einem Drehimpulsübertrag in der Lage sind. Die zur genauen Vermessung notwendige Sensitivität erreichten die Wissenschaftler durch die Kopplung der „Hamburg Inelastic X-ray scattering station“ (HIXSS) mit der hochbrillanten Synchrotronstrahlung des Speicherrings BESSY II. „Das Resultat unserer Messung ist ein wichtiger Baustein auf dem Weg zu einem besseren Verständnis der komplizierten Kopplungen zwischen Atomgitter und den drei wichtigen Eigenschaften der Elektronen – dem Spin, dem Bahndrehimpuls und der Ladung“, sagt Alexander Föhlisch: „Technologisch bedeutsame Materialeigenschaften wie schnelle Magnetisierungsprozesse können wir somit besser erklären.“ Um diese Untersuchungen zukünftig in idealer Weise am Helmholtz-Zentrum Berlin zu ermöglichen, befindet sich der neue RICXS Messplatz am Speicherring BESSY II im Aufbau. Zukünftig wird dort resonante inelastische Röntgenstreuung hoher Energie und Impulsauflösung bei höchster Transmission durchgeführt werden. Mehr dazu in der Originalveroeffentlichung: M. Beye, F. Hennies, M. Deppe, E. Suljoti, M. Nagasono, W. Wurth, A. Foehlisch, Dynamics of Electron-Phonon Scattering: Crystal- and Angular-Momentum Transfer Probed by Resonant Inelastic X-Ray Scattering, Phys. Rev. Lett. 103 (2009), 237401.

HS

  • Link kopieren

Das könnte Sie auch interessieren

  • MXene als Energiespeicher: Vielseitiger als gedacht
    Science Highlight
    03.02.2026
    MXene als Energiespeicher: Vielseitiger als gedacht
    MXene-Materialien könnten sich für eine neue Technologie eignen, um elektrische Ladungen zu speichern. Die Ladungsspeicherung war jedoch bislang in MXenen nicht vollständig verstanden. Ein Team am HZB hat erstmals einzelne MXene-Flocken untersucht, um diese Prozesse im Detail aufzuklären. Mit dem in situ-Röntgenmikroskop „MYSTIIC” an BESSY II gelang es ihnen, die chemischen Zustände von Titanatomen auf den Oberflächen der MXene-Flocken zu kartieren. Die Ergebnisse zeigen, dass es zwei unterschiedliche Redox-Reaktionen gibt, die vom jeweils verwendeten Elektrolyten abhängen. Die Studie schafft eine Grundlage für die Optimierung von MXene-Materialien als pseudokapazitive Energiespeicher.
  • KI analysiert Dinosaurier-Fußabdrücke neu
    Science Highlight
    27.01.2026
    KI analysiert Dinosaurier-Fußabdrücke neu
    Seit Jahrzehnten rätseln Paläontolog*innen über geheimnisvolle dreizehige Dinosaurier-Fußabdrücke. Stammen sie von wilden Fleischfressern, sanften Pflanzenfressern oder sogar frühen Vögeln? Nun hat ein internationales Team künstliche Intelligenz eingesetzt, um dieses Problem anzugehen – und eine kostenlose App entwickelt, die es jeder und jedem ermöglicht, die Vergangenheit zu entschlüsseln.
  • Kompakter Elektronenbeschleuniger zur Aufbereitung von PFAS-belastetem Wasser
    Science Highlight
    19.01.2026
    Kompakter Elektronenbeschleuniger zur Aufbereitung von PFAS-belastetem Wasser
    So genannte Ewigkeitschemikalien oder PFAS-Verbindungen sind ein zunehmendes Umweltproblem. Ein innovativer Ansatz für die Aufbereitung von Wasser und Böden in PFAS-belasteten Gebieten kommt jetzt aus der Beschleunigerphysik: Hochenergetische Elektronen können PFAS-Moleküle durch Radiolyse in unschädliche Bestandteile zerlegen. Ein am HZB entwickelter Beschleuniger auf Basis eines SHF-Photoinjektors kann den dafür nötigen Elektronenstrahl liefern, zeigt nun eine Studie in PLOS One.