Forscher sehen Molekulare Magneten in neuem Licht

Erkenntnisse über Molekulare Magnete könnten künftig völlig neue Horizonte für eine neue Form der Datenspeicherung sowie der Spintronik (Elektronik mit Spins) auf der Basis einzelner Moleküle eröffnen. Eine Voraussetzung für die Verwirklichung solcher Anwendungen ist jedoch die Weiterentwicklung neuartiger Molekularer Magnete auf der Basis der genauen Kenntnis ihrer magnetischen Wechselwirkungsenergien. Alexander Schnegg und Kollegen vom HZB und der FU Berlin haben nun erstmals EPR (Elektronenparamagnetische Resonanz) Spektroskopie in Kombination mit kohärenter Synchrotron Strahlung verwendet, um die magnetischen Wechselwirkungen eines Molekularen Magneten, dem Molekül Mn12Ac, zu untersuchen. Ziel dieser Untersuchungen war die Vermessung einer besonderen quantenmechanischen Eigenschaft, dem Eigendrehimpuls (Spin). Spins richten sich ähnlich kleinen Stabmagneten in einem äußeren Magnetfeld aus und bestimmen so die Magnetisierung des Materials. Sie richten sich sowohl in einem von außen angelegten Feld, als auch an den Feldern im Inneren des Materials aus. Ändern lässt sich die Orientierung der Spins durch die Einstrahlung von Licht, wobei nur solche Lichtquanten Spinübergänge verursachen, deren Energie genau der Spinübergangsenergie entsprechen. In Molekülen verschwindet die Ausrichtung der Spins normalerweise wieder sobald das äußere Magnetfeld abgeschaltet wird. In einer kleinen, aber wichtigen Klasse von Molekülen sind die inneren Wechselwirkungen aber so stark, dass sie ein magnetisches Gedächtnis besitzen und ihre Magnetisierung auch nach Abschalten des Feldes behalten. Dies sind die Molekularen Magneten. Leider haben sie diese Eigenschaften bisher nur bei sehr tiefen Temperaturen nahe dem absoluten Nullpunkt. Um diese Eigenschaften weiter zu optimieren, um vielleicht einmal Molekulare Magneten bei Raumtemperatur einzusetzen zu können, sind vor allem Messverfahren wie das am HZB aufgebaute Experiment notwendig.  Bahnbrechend ist dabei die Kombination der Instrumentierung – zum einen die Anwendung von kohärenter Synchrotronstrahlung im TeraHertzbereich, verbunden mit einem sehr starken Magneten von 11 Tesla, und einem ultra hochauflösenden FTIR-Spektrometer. Mit dem am HZB verfügbaren so genannten low alpha Modus erreichten Schnegg und Kollegen eine 103-fach höhere Intensität im Vergleich zu klassischen Quellen. Damit ist es möglich, einen sehr breiten Frequenzbereich mit höchster Auflösung in wenigen Minuten abzufahren und somit zeitliche Änderungen magnetischer Eigenschaften festhalten zu können.  Aufgebaut wurde das Spektrometer im Rahmen des BMBF geförderten Netzwerkprojektes EPR-Solar, das es den Forschern am HZB erlaubt, mit Partnern an der FU Berlin, dem Max-Planck Institut für Eisenforschung, dem Forschungszentrum Jülich und der TU München dedizierte Methoden der EPR für den Einsatz in der Energieforschung zu entwickeln. Bisher mit so großem Erfolg, dass das BMBF ein weiteres weltweit einmaliges 263 GHz EPR-Spektrometer fördert, das Ende des Jahres ebenfalls in Adlershof in Betrieb genommen werden soll.

Die Originalveröffentlichung finden Sie unter: hier

Autor: Alexander Schnegg

  • Link kopieren

Das könnte Sie auch interessieren

  • Internationale Expertise zur Augentumortherapie mit Protonenstrahlung erschienen
    Science Highlight
    03.09.2024
    Internationale Expertise zur Augentumortherapie mit Protonenstrahlung erschienen
    Ein Team aus führenden Expertinnen und Experten aus Medizinphysik, Physik und Strahlentherapie, zu dem auch die HZB-Physikerin Prof. Andrea Denker und der Charité-Medizinphysiker Dr. Jens Heufelder gehören, hat einen Übersichtsartikel zur Protonentherapie von Augentumoren veröffentlicht. Der Beitrag ist im Red Journal, einem der renommiertesten Fachjournale in diesem Bereich erschienen. Er stellt die Besonderheiten dieser Therapieform am Auge vor, erläutert den Stand der Technik und aktuelle Forschungsschwerpunkte, gibt Empfehlungen zur Durchführung der Bestrahlungen und einen Ausblick auf künftige Entwicklungen.
  • Trillium-Gitter in Langbeiniten ermöglicht Quantenphänomen
    Science Highlight
    23.08.2024
    Trillium-Gitter in Langbeiniten ermöglicht Quantenphänomen
    In der Materialklasse der Langbeinite wurde eine 3D-Quantenspinflüssigkeit entdeckt. Gründe für dieses ungewöhnliche Verhalten liegen in der kristallinen Struktur und den dadurch bedingten besonderen magnetischen Wechselwirkungen. Dies hat nun ein internationales Team durch Experimente an der Neutronenquelle ISIS und theoretische Modellierungen an einer Nickel-Langbeinit-Probe gezeigt.
  • Neue Option, um Eigenschaften von Seltenerd-Elementen zu kontrollieren
    Science Highlight
    17.07.2024
    Neue Option, um Eigenschaften von Seltenerd-Elementen zu kontrollieren
    Die besonderen Eigenschaften von magnetischen Materialien aus der Gruppe der Seltenen Erden gehen auf Elektronen in der 4f-Schale zurück. Bislang galten die magnetischen Eigenschaften der 4f-Elektronen als kaum kontrollierbar. Nun hat ein Team von HZB, der Freien Universität Berlin und weiteren Einrichtungen erstmals gezeigt, dass durch Laserpulse 4f-Elektronen beeinflusst – und damit deren magnetische Eigenschaften verändert werden können. Die Entdeckung, die durch Experimente am EuXFEL und FLASH gelang, weist einen neuen Weg zu Datenspeichern mit Seltenen Erden.