Hilfe von der dunklen Seite

Innerhalb von nur 7 Femtosekunden wird ein Elektron aus dem Eisen (III)-Komplex<br />durch Lichtanregung in ein neues Orbital verschoben. Dieses neue Orbital<br />entsteht durch Überlapp von Eisen- und Wasserorbital.

Innerhalb von nur 7 Femtosekunden wird ein Elektron aus dem Eisen (III)-Komplex
durch Lichtanregung in ein neues Orbital verschoben. Dieses neue Orbital
entsteht durch Überlapp von Eisen- und Wasserorbital.

Wissenschaftler können dank „Dark-Channel”-Fluoreszenz aufklären, wie biochemische Stoffe ihre Funktion ausüben

Spektroskopische Verfahren gehören zu den wichtigsten Methoden, mit denen Wissenschaftler ins Innere von Materialien schauen können. Sie benutzen dazu Lichtwellen, die mit der zu untersuchenden Probe in Wechselwirkung treten.

Wissenschaftler des Helmholtz-Zentrum Berlin für Materialien und Energie (HZB) haben nun mithilfe der Röntgenabsorptionsspektroskopie die Verschiebung von elektrischen Ladungen in gelösten Stoffen beobachtet, den sogenannten Elektronentransfer. Sogar Aussagen zum zeitlichen Ablauf des Prozesses sind möglich. Damit können sie auf mikroskopischer Skala herausfinden, wie zum Beispiel gelöste biochemische Stoffe ihre Funktion in ihrer natürlichen Umgebung ausüben.

Das HZB-Team um Emad Aziz berichtet darüber in der am 8. August erscheinenden online-Ausgabe der Zeitschrift Nature Chemistry  (DOI: 10.1038/NCHEM.768), wobei der Herausgeber die Arbeit als Highlight-Bericht hervor hebt.

Die Gruppe hat die Röntgenabsorptionsspektren von Eisen-Ionen sowohl in Eisenchlorid als auch in organischen Verbindungen wie zum Beispiel dem aktiven Zentrum des Blutbestandteils Hämoglobin, dem Hämin, untersucht und einen bislang nicht erklärbaren negativ erscheinenden Peak – als Dip bezeichnet - in den Spektren analysiert.
Bei der Röntgenabsorptions-Spektroskopie wird die Probe mit monochromatischem Röntgenlicht bestrahlt. Wenn die Energie des eingestrahlten Lichts gera-de mit einem energetischen Übergang im Molekül übereinstimmt, können Elekt-ronen aus ihrem Grundniveau in ein energetisch höheres Niveau angeregt werden. Bei der Rückkehr in ihren Ausgangszustand wird die zugeführte Energie wieder abgegeben, zum Beispiel durch Aussenden von Fluoreszenzlicht. Indem Wissenschaftler dieses Fluoreszenzlicht aufzeichnen, gewinnen sie Aufschluss über die elektronische Orbitalstruktur von Atomen und Molekülen.
Emad Aziz und seine Kollegen haben durch Messungen mit Synchrotronlicht an der Strahlungsquelle BESSY II herausgefunden, dass einige gelöste Stoffe nach Anregung kein Fluoreszenzlicht aussenden. Der im Spektrum negativ erscheinende Peak erwies sich als Beleg dafür, dass die Rückkehr in das Grundniveau strahlungslos über einen sogenannten dunklen Kanal stattfindet, was auch als „dark channel“ bezeichnet wird.
Dies passiert, weil durch Wechselwirkung miteinander die Moleküle der Probe und die des Lösungsmittels gemeinsame Orbitale bilden. Die angeregten Elek¬tronen werden in dieses Orbital transferiert. „Dies funktioniert, weil sich die Molekülorbitale der Ei¬sen¬¬- und der Wasserionen räumlich sehr nahe kommen und energetisch gut zusammenpassen“, erläutert Emad Aziz, Leiter einer Nach-wuchsgruppe am HZB. Die Elektronen verweilen in diesem neuen Niveau länger als in einem normalen Molekülorbital. Ihr Energiezustand verhindert daher die Aussendung des normalerweise zu erwartenden Fluoreszenzlichtes.
Die Dips im Spektrum geben damit Aufschluss über die Art der Wechselwirkung zwischen Probe und Lösungsmittel. In biochemischen Systemen wie zum Bei-spiel Proteinen kann man mithilfe dieses Prozesses nun untersuchen, in wie weit das Lösungsmittel zur Funktionalität beiträgt.
Solche ultraschnellen Vorgänge wie Ladungstransfers lassen sich mit den bisher üblichen Methoden nur mit sehr großem Aufwand beobachten. Nun haben die HZB-Forscher einen Weg gefunden, die Dynamik des Prozesses mithilfe einer einfachen Methode aufzuklären. „Wir können beobachten, wo die Ladungen hinwandern und wir können sehen, dass dies innerhalb von wenigen Femtose-kunden passiert“, betont Emad Aziz. Außerdem hat das Ergebnis große Bedeu-tung für die Interpretation von Röntgenabsorptionsspektren generell. 
Für ihre Experimente hat die Gruppe die selbst entwickelte Fließzelle genutzt, mit der es auch möglich ist, biologische Proben in ihrer natürlichen Umgebung – das heißt, in gelöster Form – mit Röntgenstrahlung zu untersuchen.

Originalarbeit in Nature Materials: DOI: 10.1038/NCHEM.768

IH

  • Link kopieren

Das könnte Sie auch interessieren

  • Grüne Herstellung von Hybridmaterialien als hochempfindliche Röntgendetektoren
    Science Highlight
    08.05.2025
    Grüne Herstellung von Hybridmaterialien als hochempfindliche Röntgendetektoren
    Neue organisch-anorganische Hybridmaterialien auf Basis von Wismut sind hervorragend als Röntgendetektoren geeignet, sie sind deutlich empfindlicher als handelsübliche Röntgendetektoren und langzeitstabil. Darüber hinaus können sie ohne Lösungsmittel durch Kugelmahlen hergestellt werden, einem umweltfreundlichen Syntheseverfahren, das auch in der Industrie genutzt wird. Empfindlichere Detektoren würden die Strahlenbelastung bei Röntgenuntersuchungen erheblich reduzieren.

  • Energiespeicher: BAM, HZB und HU Berlin planen gemeinsames Berlin Battery Lab
    Nachricht
    07.05.2025
    Energiespeicher: BAM, HZB und HU Berlin planen gemeinsames Berlin Battery Lab
    Die Bundesanstalt für Materialforschung und -prüfung (BAM), das Helmholtz-Zentrum Berlin (HZB) und die Humboldt-Universität zu Berlin (HU Berlin) haben ein Memorandum of Understanding (MoU) zur Gründung des Berlin Battery Lab unterzeichnet. Das Labor wird die Expertise der drei Institutionen bündeln, um die Entwicklung nachhaltiger Batterietechnologien voranzutreiben. Die gemeinsame Forschungsinfrastruktur soll auch der Industrie für wegweisende Projekte in diesem Bereich offenstehen.
  • BESSY II: Einblick in ultraschnelle Spinprozesse mit Femtoslicing
    Science Highlight
    05.05.2025
    BESSY II: Einblick in ultraschnelle Spinprozesse mit Femtoslicing
    Einem internationalen Team ist es an BESSY II erstmals gelungen, einen besonders schnellen Prozess im Inneren eines magnetischen Schichtsystems, eines Spinventils, aufzuklären: An der Femtoslicing-Beamline von BESSY II konnten sie die ultraschnelle Entmagnetisierung durch spinpolarisierte Stromimpulse beobachten. Die Ergebnisse helfen bei der Entwicklung von spintronischen Bauelementen für die schnellere und energieeffizientere Verarbeitung und Speicherung von Information. An der Zusammenarbeit waren Teams der Universität Straßburg, des HZB, der Universität Uppsala sowie weiterer Universitäten beteiligt.