Untiring dedication to solar energy

Award ceremony in Valencia

Award ceremony in Valencia

Prof. Dr. Hans-Werner Schock <br /> at Institute of Solar Energy Research. © HZB/F.Rott

Prof. Dr. Hans-Werner Schock
at Institute of Solar Energy Research. © HZB/F.Rott

Prof. Dr. Hans-Werner Schock received today <br /> the prestigious “Becquerel Prize”. © HZB/E. Zürn

Prof. Dr. Hans-Werner Schock received today
the prestigious “Becquerel Prize”. © HZB/E. Zürn

HZB researcher honoured with solar award for his successful research

Prof. Dr. Hans-Werner Schock, department head and spokesman for Solar Energy Research at Helmholtz-Zentrum Berlin (HZB), received on 9th september the prestigious “Becquerel Prize” at the 25th “European Photovoltaic Solar Energy Conference and Exhibition” in Valencia. The EU Commission honoured the HZB scientist for his life’s work in the field of photovoltaics.

The award ceremony took place as a highlight of the European photovoltaics conference which was held this year together with the 5th “World Conference on Photovoltaic Energy Conversion”. Hans-Werner Schock received the “Becquerel Prize” following his plenary lecture on “The Status and Advancement of CIS and Related Solar Cells”. The chairman was Daniel Lincot, head of solar energy research at the Ecole Nationale Supérieure de Chimie de Paris (ENSCP).

Prof. H.-W. Schock was distinguished by the committee for his outstanding performance in the field of solar energy technology and the development of thin-film solar cells. The first pioneer tests on chalcopyrite-based solar cells took place under his direction as early as 1980, and were to make solar energy more efficient and more competitive.

Such solar cells are made of copper-indium-sulphide (CIS) or copper-indium-gallium-selenide (CIGSe), for example. At present, Hans-Werner Schock’s group is researching new material combinations of abundant, environmentally friendly chemical elements and is continuing to refine solar cells based on these materials. The solar cells developed at HZB under Hans-Werner Schock’s leadership hold several efficiency records: CIS cells in the high-voltage range (12.8%), flexible cells made from plastics (15.9%) and conventional CIGSe cells (19.4%). The aim is for “solar cells to be integrated into buildings, for example, no longer as an investment, but as a matter of course,” says Schock.

Scientific director for Research Field Energy at HZB, Prof. Dr. Wolfgang Eberhardt, is delighted about the award: “With its research on thin-film solar cells, HZB has made it its duty to develop the technology for our future energy supply. Mr. Schock’s work is a major contribution to this. We are delighted about the worldwide recognition his work has found, and congratulate Mr. Schock on receiving this award.”

Hans-Werner Schock, born in 1946 in Tuttlingen, studied electrical engineering at University of Stuttgart and earned his doctorate at the Institute of Physical Electronics, where he later became scientific project leader of the research group “Polycrystalline Thin-Film Solar Cells”. Since 2004, he has worked at HZB as department head of the Institute for Technology. He is author and co-author of more than 300 publications and has submitted and been involved in more than ten patents in the field of solar energy technology.

The “Becquerel Prize” was first awarded in 1989 on the occasion of the 150th anniversary of Becquerel’s classic experiment on the description of the photovoltaic effect. With it, French physicist Alexandre Edmond Becquerel laid the foundation for the use of photovoltaics.

  • Copy link

You might also be interested in

  • Lithium-sulphur batteries with lean electrolyte: problem areas clarified
    Science Highlight
    12.08.2025
    Lithium-sulphur batteries with lean electrolyte: problem areas clarified
    Using a non-destructive method, a team at HZB investigated practical lithium-sulphur pouch cells with lean electrolyte for the first time. With operando neutron tomography, they could visualise in real-time how the liquid electrolyte distributes and wets the electrodes across multilayers during charging and discharging. These findings offer valuable insights into the cell failure mechanisms and are helpful to design compact Li-S batteries with a high energy density in formats relevant to industrial applications.
  • Self assembling monolayer can improve lead-free perovskite solar cells too
    Science Highlight
    04.08.2025
    Self assembling monolayer can improve lead-free perovskite solar cells too
    Tin perovskite solar cells are not only non-toxic, but also potentially more stable than lead-containing perovskite solar cells. However, they are also significantly less efficient. Now, an international team has succeeded in reducing losses in the lower contact layer of tin perovskite solar cells: The scienstists identified chemical compounds that self-assemble into a molecular layer that fits very well with the lattice structure of tin perovskites. On this monolayer, tin perovskite with excellent optoelectronic quality can be grown, which increases the performance of the solar cell.
  • Berlin Science Award goes to Philipp Adelhelm
    News
    24.07.2025
    Berlin Science Award goes to Philipp Adelhelm
    Battery researcher Prof. Dr. Philipp Adelhelm has been awarded the 2024 Berlin Science Award. He is a professor at the Institute of Chemistry at Humboldt University in Berlin (HU) and heads a joint research group at HU and the Helmholtz Zentrum Berlin (HZB). The materials scientist and electrochemist is investigating sustainable batteries, which play a key role in the success of the energy transition. He is one of the leading international experts in the field of sodium-ion batteries.