Grünes Licht für BERLinPro

Helmholtz-Zentrum Berlin entwickelt neuartige Beschleunigertechnologie

Der Helmholtz-Senat, das oberste Entscheidungsgremium der Helmholtz-Gemeinschaft, hat in seiner Herbstsitzung einstimmig die Realisierung des Projekts BERLinPro unter Federführung des Helmholtz-Zentrum Berlin (HZB) empfohlen. Die Finanzierung des Projekts als strategische Ausbauinvestition ist damit sichergestellt. Über eine Laufzeit von fünf Jahren investieren die Helmholtz-Gemeinschaft, das Land Berlin und das HZB insgesamt 25 Millionen Euro.

Mit dem Projekt BERLinPro will das HZB zusammen mit seinen Partnern in der Helmholtz-Gemeinschaft und weltweit eine neuartige Beschleunigertechnologie weiterentwickeln und das Prinzip des „Energy Recovery Linac" (ERL, deutsch: Linearbeschleuniger mit Energierückgewinnung) auf eine neue technologische Basis stellen. Gelingt BERLinPro, werden die Leistungsparameter von ERLs um Größenordnungen gesteigert. Zahlreiche neue Anwendungen wären mit ERL-Technologien, die auf BERLinPro fußen, in der Zukunft möglich.

Zum Beispiel könnten solche Technologien als so genannte „Inverse Compton Scattering Strahlungsquelle" in der medizinischen Therapie und Diagnostik eingesetzt werden. Für die Teilchenphysik könnten neue Elektronenkühler entwickelt werden, die die Grenzen der konventionell eingesetzten elektrostatischen Kühler überwinden. Des Weiteren kann die Technologie genutzt werden, um die Isotopenzusammensetzung radioaktiver Abfälle in ihrem Containment, vor der Lagerung oder Weiterbehandlung zweifelsfrei zu bestimmen. Und in Synchrotronquellen wird es mit ERL-Technologie möglich, kurze hochbrillante Lichtpulse bei sehr hohen Strömen zu erzeugen.

„Die Empfehlung, das Projekt zu finanzieren, ist eingroßer Erfolg für unser Zentrum", stellte die Geschäftsführerin des HZB, Prof. Dr. Anke Rita Kaysser-Pyzalla, nach der Senatssitzung fest: „Der Helmholtz-Senat zeigt damit sein großes Vertrauen zu den Wissenschaftlerinnen und Wissenschaftlern am HZB. Er bestätigt, dass wir in der Beschleunigertechnologie weltweit eine Spitzenposition innehaben, die wir jetzt ausbauen können."

„Die Helmholtz-Gemeinschaft hat den Auftrag, Lösungen für gesellschaftlich relevante Probleme zu erarbeiten und dafür auch neue Technologien zu entwickeln", sagt Prof. Dr. Jürgen Mlynek, Präsident der Helmholtz-Gemeinschaft: „BERLinPro ist ein wichtiges Vorhaben, mit dem wir ganz neue Türen in der Beschleunigerphysik aufstoßen werden."

Das ERL-Prinizp wurde weltweit bisher nur für kleine Elektronenströme gezeigt. Im Rahmen von BERLinPro soll nun eine kompakte Anlage aufgebaut werden, die alle Schlüsselkomponenten einer Photonenquelle enthält. Während der 2011 beginnenden Bauphase sollen alle kritischen Komponenten entwickelt und erprobt werden – zum Beispiel die hochbrillante Elektronenquelle, supraleitende Beschleunigersektionen sowie Magnetsysteme zur Strahlrückführung. Bei bisher unerreicht hoher Strahlleistung und Brillanz sollen das ERL-Prinzip demonstriert und die Aspekte von Strahlstabilität, Kontrolle des Strahlverlusts und Flexibilität der Strahlparameter studiert werden.

In BERLinPro wird ein Linearbeschleuniger einen Elektronenstrahl erzeugen, der in so genannten Kavitäten – das sind Niob-Metallröhren, die mit flüssigem Helium auf eine Temperatur knapp über dem absoluten Nullpunkt gekühlt werden – auf eine Energie beschleunigt wird, wie es dem Durchlaufen einer Spannung von 100 Millionen Volt entspräche.
Mit dieser Energie fliegen die Elektronen in ein Strahlführungssystem, in dem sie auf eine Kreisbahn gezwungen werden.

BERLinPro soll nun zeigen, dass ein Elektronenstrahl höchster Intensität und Dichte durch dieses Strahlführungssystem geleitet und dann so zum Linearbeschleuniger zurück transportiert werden kann, dass die Elektronen dort im elektromagnetischen Feld abgebremst werden und ihre Energie an das Feld zurückgeben. Die zurückgewonnene Energie des Strahls steht dann zur Verfügung, um einen frischen Elektronenstrahl zu beschleunigen – der wiederum die gleichen exzellenten Parameter aufweist wie der Strahl aus dem Umlauf zuvor.

IH

  • Link kopieren

Das könnte Sie auch interessieren

  • Batterieforschung: Alterungsprozesse operando sichtbar gemacht
    Science Highlight
    29.04.2025
    Batterieforschung: Alterungsprozesse operando sichtbar gemacht
    Lithium-Knopfzellen mit Elektroden aus Nickel-Mangan-Kobalt-Oxiden (NMC) sind sehr leistungsfähig. Doch mit der Zeit lässt die Kapazität leider nach. Nun konnte ein Team erstmals mit einem zerstörungsfreien Verfahren beobachten, wie sich die Elementzusammensetzung der einzelnen Schichten in einer Knopfzelle während der Ladezyklen verändert. An der Studie, die nun im Fachjournal Small erschienen ist, waren Teams der Physikalisch-Technischen Bundesanstalt (PTB), der Universität Münster sowie Forschende der Forschungsgruppe SyncLab des HZB und des Applikationslabors BLiX der Technischen Universität Berlin beteiligt. Ein Teil der Messungen fand mit einem Instrument im BLiX-Labor statt, ein weiterer Teil an der Synchrotronquelle BESSY II.
  • Neues Instrument bei BESSY II: Die OÆSE-Endstation in EMIL
    Science Highlight
    23.04.2025
    Neues Instrument bei BESSY II: Die OÆSE-Endstation in EMIL
    An BESSY II steht nun ein neues Instrument zur Untersuchung von Katalysatormaterialien, Batterieelektroden und anderen Energiesystemen zur Verfügung: die Operando Absorption and Emission Spectroscopy on EMIL (OÆSE) Endstation im Energy Materials In-situ Laboratory Berlin (EMIL). Ein Team um Raul Garcia-Diez und Marcus Bär hat die Leistungsfähigkeit des Instruments an elektrochemisch abgeschiedenem Kupfer demonstriert.
  • Grüner Wasserstoff: Käfigstruktur verwandelt sich in effizienten Katalysator
    Science Highlight
    17.04.2025
    Grüner Wasserstoff: Käfigstruktur verwandelt sich in effizienten Katalysator
    Clathrate zeichnen sich durch eine komplexe Käfigstruktur aus, die auch Platz für Gast-Ionen bietet. Nun hat ein Team erstmals untersucht, wie gut sich Clathrate als Katalysatoren für die elektrolytische Wasserstoffproduktion eignen. Das Ergebnis: Effizienz und Robustheit sind sogar besser als bei den aktuell genutzten Nickel-basierten Katalysatoren. Dafür fanden sie auch eine Begründung. Messungen an BESSY II zeigten, dass sich die Proben während der katalytischen Reaktion strukturell verändern: Aus der dreidimensionalen Käfigstruktur bilden sich ultradünne Nanoblätter, die maximalen Kontakt zu aktiven Katalysezentren ermöglichen. Die Studie ist in „Angewandte Chemie“ publiziert.