Bildgebung mit Neutronen: Magnetische Domänen erstmals in 3-D sichtbar

Die Grenzen der magnetischen Dom&auml;nen k&ouml;nnen am Computer<br />dreidimensional dargestellt werden.<br />

Die Grenzen der magnetischen Domänen können am Computer
dreidimensional dargestellt werden.
© HZB/Manke, Grothausmann

Bisher konnten magnetische Domänen nur zweidimensional abgebildet werden. Wissenschaftlern des Helmholtz-Zentrum Berlin (HZB) ist es nun gelungen, diese Bereiche im Inneren von magnetischen Stoffen zum ersten Mal dreidimensional darzustellen. Sie publizieren dies in der Zeitschrift Nature Communications.

Obwohl sie in fast jedem magnetischen Material zu finden sind, kann man sie nicht sehen: Magnetische Domänen sind mikroskopisch kleine, magnetisierte Bereiche. Jedes magnetische Material, ist in solche Domänen aufgeteilt. Wissenschaftler nennen sie „Weiss´sche Bezirke“, nach dem Physiker Pierre-Ernest Weiss, der ihre Existenz vor über hundert Jahren theo­retisch vorhergesagt hatte. 1907 erkannte er, dass die magnetischen Momente der Atome innerhalb eines begrenzten Bezirks gleich ausgerichtet sind.

Diese Theorie konnte bislang nur mit zweidimensionalen Bildern und an Materialoberflächen nachverfolgt werden. Dr. Ingo Manke und sein Team am Institut Angewandte Materialforschung des HZB haben gemeinsam mit Kollegen der Bundesanstalt für Materialforschung und dem Paul-Scherrer Institut eine Methode entwickelt, mit der sie die magnetischen Domänen vollständig in ihrer räumlichen Struktur darstellen können – auch im Materialinneren. Dafür wurden am Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden spezielle Eisensilizium-Kristalle hergestellt, für deren innere Domänenstruktur die Forscher in der Arbeitsgruppe von Dr. Schäfer bereits Modellvorstellungen entwickelt hatten, deren tatsächliche Existenz nun erstmals nachgewiesen werden konnte.  Damit lösen die Forscher ein Jahrzehnte altes Problem in der Bildgebung. Sie publi­zieren dies in der Zeitschrift Nature Communications (DOI: 10.1038 /ncomms1125).

Die meisten magnetischen Stoffe bestehen aus einem komplexen Netzwerk magnetischer Domänen. Die von den Wissenschaftlern entwickelte Methode nutzt die Bereiche aus, in denen die Bezirke aneinanderstoßen – sogenannte Domänengrenzen. Innerhalb einer Domäne sind alle magnetischen Momente gleich, von Domäne zu Domäne ist die magnetische Ausrichtung aber ver­schieden. An jeder Domänengrenze wech­selt also die Richtung des Magnet­feldes. Diese Änderungen nutzen die Forscher für ihr radiografisches Verfahren, bei dem sie statt Licht Neutronen verwenden.

Magnetische Felder lenken die Neutronen in ihrer Flugrichtung leicht ab, genauso wie Licht in Wasser abgelenkt wird: Einen Gegenstand im Wasser kann man daher nicht direkt erkennen. Das Objekt erscheint ver­zerrt und an einem anderem Ort. In ähnlicher Weise überqueren die Neutronen auf ihrem Weg durch das magnetische Material Domänengrenzen. An diesen werden sie in verschiedene Richtungen abgelenkt.

Die Ablenkung ist allerdings ein sehr schwacher Effekt. Im Neutronen-Radiogramm ist er gewöhnlich nicht sichtbar, weil er von nicht abgelenkten Strahlen überlagert wird. Die Forscher setzten daher mehrere Beu­gungsgitter ein, um die abgelenkten Strahlen zu separieren. Während der Messung drehen sie die Probe und durchleuchten sie aus allen Richtungen. Aus den separierten Strahlen können sie alle Domänenformen berechnen und das Domänen-Netzwerk vollständig abbilden.

Magnetische Domänen sind wichtig, um Materialeigenschaften und physika­lische Naturgesetze zu verstehen. Auch im Alltag spielen sie eine wichtige Rolle: vor allem in Speichermedien wie Festplatten und Ladegeräten, beispiels­weise für Laptops oder Elektrofahrzeuge. Wählt man die Eigenschaften der Domänen so, dass möglichst wenig Strom an den Domänengrenzen verloren geht, werden zum Beispiel Ladegeräte  leistungsfähiger.

Franziska Rott

  • Link kopieren

Das könnte Sie auch interessieren

  • Trillium-Gitter in Langbeiniten ermöglicht Quantenphänomen
    Science Highlight
    23.08.2024
    Trillium-Gitter in Langbeiniten ermöglicht Quantenphänomen
    In der Materialklasse der Langbeinite wurde eine 3D-Quantenspinflüssigkeit entdeckt. Gründe für dieses ungewöhnliche Verhalten liegen in der kristallinen Struktur und den dadurch bedingten besonderen magnetischen Wechselwirkungen. Dies hat nun ein internationales Team durch Experimente an der Neutronenquelle ISIS und theoretische Modellierungen an einer Nickel-Langbeinit-Probe gezeigt.
  • Neue Option, um Eigenschaften von Seltenerd-Elementen zu kontrollieren
    Science Highlight
    17.07.2024
    Neue Option, um Eigenschaften von Seltenerd-Elementen zu kontrollieren
    Die besonderen Eigenschaften von magnetischen Materialien aus der Gruppe der Seltenen Erden gehen auf Elektronen in der 4f-Schale zurück. Bislang galten die magnetischen Eigenschaften der 4f-Elektronen als kaum kontrollierbar. Nun hat ein Team von HZB, der Freien Universität Berlin und weiteren Einrichtungen erstmals gezeigt, dass durch Laserpulse 4f-Elektronen beeinflusst – und damit deren magnetische Eigenschaften verändert werden können. Die Entdeckung, die durch Experimente am EuXFEL und FLASH gelang, weist einen neuen Weg zu Datenspeichern mit Seltenen Erden.
  • Spintronik: Ein neuer Weg zu wirbelnden Spin-Texturen bei Raumtemperatur
    Science Highlight
    16.04.2024
    Spintronik: Ein neuer Weg zu wirbelnden Spin-Texturen bei Raumtemperatur
    Ein Team am HZB hat an BESSY II eine neue, einfache Methode untersucht, mit der sich stabile radiale magnetische Wirbel in magnetischen Dünnschichten erzeugen lassen.