Schnellster Film der Welt aufgenommen

Das abgebildete Brandenburger Tor ist nur wenige Mikrometer groß.<br />Mit nur 50 Femtosekunden Zeitabstand haben die Wissenschaftler<br />die grüne und rote Abbildung des Objekts aufgenommen.<br />

Das abgebildete Brandenburger Tor ist nur wenige Mikrometer groß.
Mit nur 50 Femtosekunden Zeitabstand haben die Wissenschaftler
die grüne und rote Abbildung des Objekts aufgenommen.
© HZB

der zentrale Teil des aufgenommenen Hologramms<br />des Brandenburger Tor-Modells

der zentrale Teil des aufgenommenen Hologramms
des Brandenburger Tor-Modells © HZB/Eisebitt

Wissenschaftler entwickeln eine Methode, um Nanostrukturen zu filmen

Wenn wir erkältet sind, wehrt sich das Immunsystem. Das ist in der Biologie bekannt, aber schwer direkt zu beobachten. Denn Vorgänge auf molekularer Ebene sind nicht nur winzig, sondern vor allem extrem schnell und deswegen schwierig abzubilden. Wissenschaftler des Helmholtz-Zentrum Berlin für Materialien und Energie (HZB) und der Technischen Universität Berlin (TUB) stellen nun in der Zeitschrift Nature Photonics eine Methode vor, die ein wichtiger Schritt zum „molekularen Film“ ist. Sie können Bilder in einem so kurzen Zeitabstand aufnehmen, dass man Moleküle und Nanostrukturen zukünftig in Echtzeit beobachten kann.

Ein „molekularer Film“, der zeigt, wie sich ein Molekül im wichtigsten Moment einer chemischen Reaktion verhält, würde helfen fundamentale Vorgänge der Naturwissenschaften besser zu verstehen. Solche Prozesse sind oft nur einige Femtosekunden lang. Eine Femtosekunde ist ein Millionstel einer Milliardstel Sekunde.

In diesem Zeitfenster kann man mit einem ultra-kurzen Lichtblitz zwar ein Bild aufnehmen – aber nicht mehrere. Die Bilder würden sich auf dem Detektor, der das Bild wiedergibt, überlagern und „verwaschen“. Den Detektor alternativ zwischen zwei Bildern auszuwechseln, würde selbst mit Lichtgeschwindigkeit zu lange dauern.
Trotzdem ist es der gemeinsamen Forschergruppe „Funktionale Nanomaterialien“ des HZB und der Technischen Universität Berlin am FEL des DESY Hamburg gelungen, mit Röntgenlicht solche ultraschnellen Bildsequenzen von Mikrometer kleinen Objekten aufzunehmen. Gemeinsam mit Kollegen der Universität Münster publizieren sie dies in der Zeitschrift Nature Photonics (DOI: 10.1038/NPHOTON.2010.287).

Die Forscher hatten eine raffinierte Idee, wie sie die überlagerten Bilder entschlüsseln können: Als Detektor dient ein Röntgen-Hologramm. Es erlaubt, zwei Abbildungen gleichzeitig aufzunehmen. Für die finale Bildsequenz sind mehrere Schritte nötig: Zunächst zerteilen die Wissenschaftler einzelne Strahlenbündel eines Röntgenlaserstrahls in zwei separate Lichtblitze. Einem Lichtblitz zwingen sie einen kleinen Umweg auf, wodurch beide minimal zeitversetzt auf das abzubildende Objekt treffen.

Es entstehen zwei Hologramme. Aus diesen kann man beide Bilder mit Hilfe einer mathematischen Funktion rekonstruieren. Dabei ist die Position der rekonstruierten Bilder zum abgebildeten Objekt verschieden und hängt davon ab, von welchem Lichtblitz sie erzeugt wurden. Die Forscher ordnen die Bilder einfach den jeweiligen Lichtblitzen zu und erhalten so die zeitlich richtige Abfolge der Bildsequenz.

Mit ihrer Methode nahmen die Berliner Wissenschaftler zwei Bilder eines Brandenburger Tor-Modells im Mikroformat mit nur 50 Femtosekunden Abstand auf. „In diesem kurzen Zeitintervall kommt selbst ein Lichtstrahl nur um die Breite eines Haares voran“, sagt Christian Günther, der als Doktorand das Projekt vorangetrieben hat. Dabei erlaubt die kurzwellige Röntgenstrahlung die Abbildung kleinster Strukturen. Denn je kürzer die Wellenlänge des Lichts ist, desto kleinere Objekte können abgebildet werden.

 „Das langfristige Ziel ist, die Bewegung von Molekülen und Nanostrukturen in Echtzeit verfolgen zu können“, sagt Projektleiter Prof. Dr. Stefan Eisebitt. Die extrem hohe Zeitauflösung gepaart mit der Möglichkeit, kleinste Objekte zu sehen, war die Motivation für die Entwicklung des Verfahrens. Denn ein Bild sagt zwar mehr als tausend Worte, ein Film aber ist aus mehreren Bildern zusammen gesetzt und kann zusätzlich etwas über die Dynamik eines Objektes aussagen.

FR

  • Link kopieren

Das könnte Sie auch interessieren

  • KI analysiert Dinosaurier-Fußabdrücke neu
    Science Highlight
    27.01.2026
    KI analysiert Dinosaurier-Fußabdrücke neu
    Seit Jahrzehnten rätseln Paläontolog*innen über geheimnisvolle dreizehige Dinosaurier-Fußabdrücke. Stammen sie von wilden Fleischfressern, sanften Pflanzenfressern oder sogar frühen Vögeln? Nun hat ein internationales Team künstliche Intelligenz eingesetzt, um dieses Problem anzugehen – und eine kostenlose App entwickelt, die es jeder und jedem ermöglicht, die Vergangenheit zu entschlüsseln.
  • Zukunft der Korallen – Was Röntgenuntersuchungen zeigen können
    Interview
    12.11.2025
    Zukunft der Korallen – Was Röntgenuntersuchungen zeigen können
    In diesem Sommer war es in allen Medien. Angetrieben durch die Klimakrise haben nun auch die Ozeane einen kritischen Punkt überschritten, sie versauern immer mehr. Meeresschnecken zeigen bereits erste Schäden, aber die zunehmende Versauerung könnte auch die kalkhaltigen Skelettstrukturen von Korallen beeinträchtigen. Dabei leiden Korallen außerdem unter marinen Hitzewellen und Verschmutzung, die weltweit zur Korallenbleiche und zum Absterben ganzer Riffe führen. Wie genau wirkt sich die Versauerung auf die Skelettbildung aus?

    Die Meeresbiologin Prof. Dr. Tali Mass von der Universität Haifa, Israel, ist Expertin für Steinkorallen. Zusammen mit Prof. Dr. Paul Zaslansky, Experte für Röntgenbildgebung an der Charité Berlin, untersuchte sie an BESSY II die Skelettbildung bei Babykorallen, die unter verschiedenen pH-Bedingungen aufgezogen wurden. Antonia Rötger befragte die beiden Experten online zu ihrer aktuellen Studie und der Zukunft der Korallenriffe. 

  • Ein innerer Kompass für Meereslebewesen im Paläozän
    Science Highlight
    20.10.2025
    Ein innerer Kompass für Meereslebewesen im Paläozän
    Vor Jahrmillionen produzierten einige Meeresorganismen mysteriöse Magnetpartikel von ungewöhnlicher Größe, die heute als Fossilien in Sedimenten zu finden sind. Nun ist es einem internationalen Team gelungen, die magnetischen Domänen auf einem dieser „Riesenmagnetfossilien” mit einer raffinierten Methode an der Diamond-Röntgenquelle zu kartieren. Ihre Analyse zeigt, dass diese Partikel es den Organismen ermöglicht haben könnten, winzige Schwankungen sowohl in der Richtung als auch in der Intensität des Erdmagnetfelds wahrzunehmen. Dadurch konnten sie sich verorten und über den Ozean navigieren. Die neue Methode eignet sich auch, um zu testen, ob bestimmte Eisenoxidpartikel in Marsproben tatsächlich biogenen Ursprungs sind.