Kampf gegen Antibiotika-Resistenzen - Wissenschaftler enttarnen Resistenzprotein

Vordere Reihe, von links nach rechts: Leona Berndt, Christiane<br />Kowsky, Daniela Dalm<br />Hintere Reihe, von links nach rechts: Gesa Volkers, Xenia<br />Bogdanovic, Britta Girbardt, Christiane Großmann, Dr. Christiane<br />Fenske, Dr. Gottfried Palm, Winfried Hinrichs<br />Foto: Uni Greifswald

Vordere Reihe, von links nach rechts: Leona Berndt, Christiane
Kowsky, Daniela Dalm
Hintere Reihe, von links nach rechts: Gesa Volkers, Xenia
Bogdanovic, Britta Girbardt, Christiane Großmann, Dr. Christiane
Fenske, Dr. Gottfried Palm, Winfried Hinrichs
Foto: Uni Greifswald

Wissenschaftler des Helmholtz-Zentrum Berlin haben mit der Synchrotronstrahlungsquelle BESSY II an der Strukturaufklärung eines Proteins mitgewirkt, das für Antibiotikaresistenzen verantwortlich ist: Mit ihrer Unterstützung ist es Forschern der Universität Greifswald gelungen, die Struktur des Proteins Monooxygenase TetX zu entschlüsseln, das Bakterien eine Resistenz gegen Tetracyclin-Antibiotika vermittelt. Damit wurde erstmals ein Schlüssel zum Verständnis eines Resistenzmechanismus gefunden, noch bevor die klinische Anwendung eines Antibiotikums wirkungslos wird. Ein entsprechender Artikel wurde jetzt in der wissenschaftlichen Fachzeitschrift FEBS Letters veröffentlicht.

In enger Kooperation mit der kanadischen Gruppe um Prof. Gerard D. Wright (Institute for Infectious Disease Research, McMaster University, Hamilton, Canada) und Dr. Manfred S. Weiss (Helmholtz-Zentrum Berlin für Materialien und Energie) hat die Greifswalder Arbeitsgruppe von Prof. Winfried Hinrichs im Institut für Biochemie mit Methoden der Proteinkristallographie die dreidimensionale Struktur des Resistenzproteins aufgeklärt.

Die Entwicklung und Anwendung von Antibiotika zur Behandlung von bakteriellen Infektionskrankheiten wird seit langer Zeit durch die Ausbreitung klinisch problematischer Resistenzmechanismen immer schwieriger und kostspieliger. Wird ein neuer Wirkstoff nach jahrelanger Entwicklung auf den Markt gebracht, dauert es nicht lange, bis resistente Mikroorganismen bekannt werden – ein ewiges Wettrüsten. Kürzlich wurde die Tetracyclin-Variante (Tigecyclin) in die klinische Anwendung aufgenommen. Von diesem Antibiotikum ist bekannt, dass es gegen resistente Bakterien hochwirksam ist. Leider ist auch hier bereits ein bakterieller Resistenzmechanismus bekannt, der momentan noch keine Rolle bei der Anwendung in der Human- und Tiermedizin spielt. Aber es steht zu befürchten, dass sich dieser Mechanismus auf problematische Krankheitskeime ausbreiten wird. Diese Resistenz beruht auf einem Enzym, der Monooxygenase TetX. Es versetzt die Bakterien in die Lage, alle medizinisch relevanten Tetracycline gezielt abzubauen.

Die röntgen-kristallographischen Untersuchungen wurden an Synchrotron-Strahlungsquellen in Hamburg (EMBL c/o DESY) und Berlin (BESSY) durchgeführt. Diese Arbeiten sind Teil der Doktorarbeit von Dipl.-Biochem. Gesa Volkers aus Greifswald. Ihre kürzlich publizierten Strukturanalysen geben Einblick in die atomare Struktur des Enzym-Moleküls und zeigen, wie Tetracycline erkannt werden. Damit ist der einzigartige Fall eingetreten, dass ein Schlüsselschritt eines Resistenzmechanismus auf molekularer Ebene bekannt ist, noch bevor das Antibiotikum wirkungslos wird. Auf dieser Basis könnte es möglich werden, Konzepte zu entwickeln, wie neue Tetracyclin-Moleküle umzubauen sind, damit sie gegen TetX stabil sind und wieder antibiotische Wirkung haben („drug design“).

Mit diesem Projekt konnte die Arbeitsgruppe von Prof. Hinrichs bereits zum zweiten Mal strukturbiologische Grundlagen zu Resistenzmechanismen gegen Tetracycline liefern.

Originalpublikation: G. Volkers, G. J. Palm, M. S. Weiss, G. D. Wright, W. Hinrichs

"Structural basis for a new tetracycline resistance mechanism relying on the TetX monooxygenase." FEBS Letters 585(7), 1061-1066 (2011).

HS

  • Link kopieren

Das könnte Sie auch interessieren

  • Ernst-Eckhard-Koch-Preis und Innovationspreis Synchrotronstrahlung 2025
    Nachricht
    05.12.2025
    Ernst-Eckhard-Koch-Preis und Innovationspreis Synchrotronstrahlung 2025
    Der Freundeskreis des HZB zeichnete auf dem 27. Nutzertreffen BESSY@HZB die Dissertation von Dr. Enggar Pramanto Wibowo (Friedrich-Alexander-Universität Erlangen-Nürnberg) aus.
    Darüber hinaus wurde der Europäische Innovationspreis Synchrotronstrahlung 2025 an Prof. Tim Salditt (Georg-August-Universität Göttingen) sowie an die Professoren Danny D. Jonigk und Maximilian Ackermann (beide, Universitätsklinikum der RWTH Aachen) verliehen. 
  • Synchrotron-strahlungsquellen: Werkzeugkästen für Quantentechnologien
    Science Highlight
    01.12.2025
    Synchrotron-strahlungsquellen: Werkzeugkästen für Quantentechnologien
    Synchrotronstrahlungsquellen erzeugen hochbrillante Lichtpulse, von Infrarot bis zu harter Röntgenstrahlung, mit denen sich tiefe Einblicke in komplexe Materialien gewinnen lassen. Ein internationales Team hat nun im Fachjournal Advanced Functional Materials einen Überblick über Synchrotronmethoden für die Weiterentwicklung von Quantentechnologien veröffentlicht: Anhand konkreter Beispiele zeigen sie, wie diese einzigartigen Werkzeuge dazu beitragen können, das Potenzial von Quantentechnologien wie z. B. Quantencomputing zu erschließen, Produktionsbarrieren zu überwinden und den Weg für zukünftige Durchbrüche zu ebnen.
  • Neue Katalysatormaterialien auf Basis von Torf für Brennstoffzellen
    Science Highlight
    25.11.2025
    Neue Katalysatormaterialien auf Basis von Torf für Brennstoffzellen
    Eisen-Stickstoff-Kohlenstoff-Katalysatoren haben das Potenzial, teure Platinkatalysatoren in Brennstoffzellen zu ersetzen. Dies zeigt eine Studie aus Helmholtz-Zentrum Berlin (HZB), der Physikalisch-Technischen Bundesanstalt (PTB) und der Universitäten in Tartu und Tallinn, Estland. An BESSY II beobachtete das Team, wie sich komplexe Mikrostrukturen in den Proben bilden. Anschließend analysierten sie, welche Strukturparameter für die Förderung der bevorzugten elektrochemischen Reaktionen besonders wichtig waren. Der Rohstoff für solche Katalysatoren ist gut zersetzter Torf.