The large-scale project EMIL (Energy Materials In-situ Laboratory Berlin) will create new opportunities for researching energy materials by the beginning of 2015

Helmholtz Zentrum Berlin and the Max Planck Society are going to build a new, dedicated X-ray beamline together at the synchrotron source BESSY II, which will be used for analysing materials for renewable energy generation. The new large-scale project has been dubbed EMIL (a common name in Berlin, but which also stands for Energy Materials In-situ Laboratory Berlin) and includes, among other things, the major project already announced under the name of SISSY (Solar Energy Materials In-Situ Spectroscopy at the Synchrotron). The assessment of EMIL in September 2011, by an external committee of experts engaged by the scientific advisory board, went very well and the experts endorsed the EMIL project "enthusiastically". The supervisory board of HZB will give the go-ahead for construction of EMIL in two months.

HZB project manager Dr. Klaus Lips is very satisfied with the results: "In the planned laboratory, we will combine material production with ultra-precise analysis of visible properties better than anywhere else in the world, without interruption of the vacuum needed for synthesis, which will allow us to develop better thin-film solar cells and energy stores."

EMIL will be a worldwide unique laboratory, built and operated at BESSY II, where materials for photovoltaics and photocatalytic processes can be studied by X-ray analysis. Three experimental stations will be built, where researchers will have soft and hard X-rays at their disposal (60 eV–10 keV).

The measuring station SISSY will be available for studying photovoltaic materials at EMIL. Another measuring station, CAT@EMIL, will be in the same laboratory for researching catalysts, and is being financed and built by the Max Planck Society. Both measuring stations are primarily intended for in-house research, while one third of the measurement time will be made available for external users from universities and industry.

The third measuring station planned in the EMIL project (60to6), which has received no funding as yet, would be primarily dedicated for external users. Since the beamline offers unique conditions for studying materials with its excellent beam characteristics, establishing 60to6@EMIL will make EMIL even more attractive to external researchers. Users shall have up to 80 percent of the measurement time available at 60to6.

Building EMIL, with its analytical tools SISSY and CAT, requires 18 million euros in funding. Following a positive vote from the supervisory board, HZB will invest 6 million euros in EMIL and the Max Planck Society will participate with a further 6.7 million euros.  The German Federal Ministry for Education and Research (BMBF) is funding construction of the SISSY station with 5.7 million euros from the "Photovoltaics" innovation alliance.

"We could not have imagined that EMIL would be realized together with the Max Planck Society, and the best analytical conditions created for researchers worldwide, had the two centres not merged in 2009. The new EMIL project makes the benefits of the merger especially clear," says Dr. Markus Sauerborn, head of the policy unit "Strategy and Programs".

Constructing EMIL will require extensive structural measures at BESSY II, and we will keep you up to date on these.

Update: The supervisory board has given his positive vote for realising the EMIL project in December 2011.

SZ

  • Copy link

You might also be interested in

  • Key technology for a future without fossil fuels
    Interview
    21.08.2025
    Key technology for a future without fossil fuels
    In June and July 2025, catalyst researcher Nico Fischer spent some time at HZB. It was his sabbatical, he was relieved of his duties as Director of the Catalysis Institute in Cape Town for several months and was able to focus on research only. His institute is collaborating with HZB on two projects that aim to develop environmentally friendly alternatives using innovative catalyst technologies. The questions were asked by Antonia Rötger, HZB.
  • Self assembling monolayer can improve lead-free perovskite solar cells too
    Science Highlight
    04.08.2025
    Self assembling monolayer can improve lead-free perovskite solar cells too
    Tin perovskite solar cells are not only non-toxic, but also potentially more stable than lead-containing perovskite solar cells. However, they are also significantly less efficient. Now, an international team has succeeded in reducing losses in the lower contact layer of tin perovskite solar cells: The scienstists identified chemical compounds that self-assemble into a molecular layer that fits very well with the lattice structure of tin perovskites. On this monolayer, tin perovskite with excellent optoelectronic quality can be grown, which increases the performance of the solar cell.
  • Scrolls from Buddhist shrine virtually unrolled at BESSY II
    Science Highlight
    23.07.2025
    Scrolls from Buddhist shrine virtually unrolled at BESSY II
    The Mongolian collection of the Ethnological Museum of the National Museums in Berlin contains a unique Gungervaa shrine. Among the objects found inside were three tiny scrolls, wrapped in silk. Using 3D X-ray tomography, a team at HZB was able to create a digital copy of one of the scrolls. With a mathematical method the scroll could be virtually unrolled to reveal the scripture on the strip. This method is also used in battery research.