Under cover of graphene

Phoenex-Apparatus<br />

Phoenex-Apparatus
© HZB

Researchers at Helmholtz-Zentrum Berlin have developed a method to conserve electronic surface states using graphene.

Scientists at Helmholtz-Zentrum Berlin (HZB), together with colleagues from Dresden and Jülich, have succeeded in making the electronic surface-state of a metal extra-durable. To this end, they seal the surface of the metal iridium with a layer of carbon that has the thickness of a single atom. This modification of carbon known as graphene proves to be an efficient shield against outside influences. This ability to preserve the  electronic surface-state is of paramount interest for spintronics. The HZB scientists have published their findings today in the journal "Physical Review Letters" (DOI: 10.1103/PhysRevLett.108.066804).

Spintronics employs the magnetic moment - the spin - of electrons in order to process information. Surfaces are particularly well suited for distinguishing electrons with different spin, due to what physicists call a "broken symmetry". The electrons at the surface, on the other hand, are extremely active and easily form a chemical bond, with oxygen for example. Therefore, it has only been possible to preserve a particular spin state under extreme conditions, e.g. ultrahigh vacuum.

In their successful experiments to conserve the electronic surface structure, HZB researchers tested the metal iridium. "We treated the metal catalytically with propylene gas, a hydrocarbon" says project leader Dr. Andrei Varykhalov from the HZB department for magnetization dynamics. The surface allows for two competing reactions, explains Varykhalov, of which the graphenization wins out. "In this way, a single layer of carbon atoms forms on the iridium."

HZB researchers  studied this graphene layer as well as the spin states of the top layer of the metal with sophisticated analytical methods at the electron storage ring BESSY II. Their instrument contains an apparatus from particle physics, a so-called spin detector.

"At first, we were able to demonstrate that the spin states of the iridium do not change under the gaphene layer. This was in agreement with model calculations made by researchers in Jülich" Varykhalov explains. "In a second step we found that they also persist in the air". This is considered an important progress for spintronics. Varykhalov: "Our graphene-covered iridium is still a model system for research. If we succeed with graphene to also conserve the spin states of an insulator, we can bring realistic applications for spintronics within reach."

HS

  • Copy link

You might also be interested in

  • What Zinc concentration in teeth reveals
    Science Highlight
    19.02.2026
    What Zinc concentration in teeth reveals
    Teeth are composites of mineral and protein, with a bulk of bony dentin that is highly porous. This structure is allows teeth to be both strong and sensitive. Besides calcium and phosphate, teeth contain trace elements such as zinc. Using complementary microscopy imaging techniques, a team from Charité Berlin, TU Berlin and HZB has quantified the distribution of natural zinc along and across teeth in 3 dimensions. The team found that, as porosity in dentine increases towards the pulp, zinc concentration increases 5~10 fold. These results help to understand the influence of widely-used zinc-containing biomaterials (e.g. filling) and could inspire improvements in dental medicine.
  • Fascinating archaeological find becomes a source of knowledge
    News
    12.02.2026
    Fascinating archaeological find becomes a source of knowledge
    The Bavarian State Office for the Preservation of Historical Monuments (BLfD) has sent a rare artefact from the Middle Bronze Age to Berlin for examination using cutting-edge, non-destructive methods. It is a 3,400-year-old bronze sword, unearthed during archaeological excavations in Nördlingen, Swabia, in 2023. Experts have been able to determine how the hilt and blade are connected, as well as how the rare and well-preserved decorations on the pommel were made. This has provided valuable insight into the craft techniques employed in southern Germany during the Bronze Age. The BLfD used 3D computed tomography and X-ray diffraction to analyse internal stresses at the Helmholtz-Zentrum Berlin (HZB), as well as X-ray fluorescence spectroscopy at a BESSY II beamline supervised by the Bundesanstalt für Materialforschung und -prüfung (BAM).
  • Element cobalt exhibits surprising properties
    Science Highlight
    11.02.2026
    Element cobalt exhibits surprising properties
    The element cobalt is considered a typical ferromagnet with no further secrets. However, an international team led by HZB researcher Dr. Jaime Sánchez-Barriga has now uncovered complex topological features in its electronic structure. Spin-resolved measurements of the band structure (spin-ARPES) at BESSY II revealed entangled energy bands that cross each other along extended paths in specific crystallographic directions, even at room temperature. As a result, cobalt can be considered as a highly tunable and unexpectedly rich topological platform, opening new perspectives for exploiting magnetic topological states in future information technologies.