Mit ILGAR auf Rekordjagd

Eine Chalcopyrit-Dünnschicht-Solarzelle auf dem<br />Sonnensimulator-Teststand.<br />©HZB

Eine Chalcopyrit-Dünnschicht-Solarzelle auf dem
Sonnensimulator-Teststand.
©HZB

HZB-Wissenschaftler bekommen gleich zwei Wirkungsgrad-Rekorde für CIS-Dünnfilm-Solarmodule bestätigt

Der Bedarf an erneuerbaren Energien steigt – Klimawandel und Krise der Atomkraft treiben die Entwicklung an. Im Photovoltaikmarkt spielen CIS-Dünnfilm-Solarmodule eine immer größere Rolle. In ihnen werden Halbleiter eingesetzt – meist Kupfer-Verbindungen – so genannte Chalkopyrite – um aus Sonnenlicht Strom zu gewinnen. Das Institut „Heterogene Materialsysteme“ des Helmholtz-Zentrum Berlin (HZB) hat jetzt gleich zwei Rekord-Wirkungsgrade für solche Solarzellen vom unabhängigen Institut für Solare Energiesysteme (ISE) in Freiburg bestätigt bekommen. Das Besondere: Die so genannte Pufferschicht der Solarzellen ist mit dem umweltfreundlichen, am HZB entwickelten Herstellungsverfahren ILGAR entstanden. Das normalerweise genutzte Schwermetall Cadmium kommt dabei nicht zum Einsatz.

Für alle Komponenten von Dünnfilm-Solarmodulen existieren technologisch günstige Produktionsprozesse – bis vor kurzem jedoch nicht für die Pufferschicht. Das Standard-Material für diese Komponente ist das giftige Cadmium-Sulfid. Das am HZB entwickelte ILGAR-Verfahren (Ion Layer Gas Reaction) hat hier Abhilfe geschaffen: Mit ihm lassen sich in standardisierten Prozessen Halbleiterschichten höchster Qualität für Dünnschichtsolarzellen herstellen. Die dabei produzierten Pufferschichten aus Indiumsulfid oder Zinksulfid/Indiumsulfid ersetzen in Dünnschichtsolarzellen nicht nur das giftige Cadmium. ILGAR macht auch ein Abscheideverfahren überflüssig: das als „Chemical Bath Deposition“ bezeichnete Verfahren, das als langsam und umweltschädlich gilt.

Für ihre Rekordzellen haben die HZB-Wissenschaftler Absorber – also lichtabsorbierende Schichten – genutzt, die standardmäßig in der Industrie im Einsatz sind. Damit wurden ihnen gleich zwei Solarzell-Wirkungsgrade bestätigt. 16,1 Prozent wurden für Zellen erreicht, die mit ILGAR-Indiumsulfid-Pufferschichten (In2S3) auf Bosch CIS Tech Cu(In,Ga)(S,Se)2-Absorbern hergestellt wurden (in-house Messung direkt nach Herstellung 16.8%). Für den Puffer war die HZB-Wissenschaftlerin Johanna Krammer verantwortlich. Sie konnte dabei auf umfangreiche Vorarbeiten der gesamten ILGAR-Gruppe zurückgreifen. Auf seiten der Firma Bosch sind Dr. A. Jasenek und Dr. F. Hergert zu nennen.

Auf Zellen mit Absorbern der Firma AVANCIS konnten die Wissenschaftler bei eigenen Messungen Zell-Wirkungsgrade von 16.4 Prozent feststellen. Gemeinsam mit dem Maschinenbauer Singulus-Stangl Solar wurde ein industrieller Prototyp eines ILGAR in-line-Beschichters entwickelt. Hiermit wurden im HZB bereits In2S3-Puffer mit einer Geschwindigkeit von 10 Millimeter pro Sekunde abgeschieden. Die resultierenden 30x30 Quadratzentimeter Solarmodule auf der Basis von AVANCIS Absorberschichten zeigten mit 13.7 Prozent eine gleichwertige Effizienz wie die mit Cadmiumsulfid gepufferten Referenzmodule.

Im Juni 2011 ist das ILGAR-Team um Professor Dr. Christian-Herbert Fischer auf der Clean Technology Conference & Expo in Boston, USA, für sein patentiertes ILGAR-Verfahren als einer von vier GERMAN HIGH TECH CHAMPIONS im Wettbewerb der Fraunhofer-Gesellschaft ausgezeichnet worden.

HS

  • Link kopieren

Das könnte Sie auch interessieren

  • Berliner Wissenschaftspreis geht an Philipp Adelhelm
    Nachricht
    24.07.2025
    Berliner Wissenschaftspreis geht an Philipp Adelhelm
    Der Batterieforscher Prof. Dr. Philipp Adelhelm wird mit dem Berliner Wissenschaftspreis 2024 ausgezeichnet.  Er ist Professor am Institut für Chemie der Humboldt-Universität zu Berlin (HU) und leitet eine gemeinsame Forschungsgruppe der HU und des Helmholtz-Zentrums Berlin (HZB). Der Materialwissenschaftler und Elektrochemiker forscht zur Entwicklung nachhaltiger Batterien, die eine Schlüsselrolle für das Gelingen der Energiewende spielen. International zählt er zu den führenden Expert*innen auf dem Gebiet der Natrium-Ionen-Batterien.
  • Langzeittest zeigt: Effizienz von Perowskit-Zellen schwankt mit der Jahreszeit
    Science Highlight
    21.07.2025
    Langzeittest zeigt: Effizienz von Perowskit-Zellen schwankt mit der Jahreszeit
    Auf dem Dach eines Forschungsgebäudes am Campus Adlershof läuft ein einzigartiger Langzeitversuch: Die unterschiedlichsten Solarzellen sind dort über Jahre Wind und Wetter ausgesetzt und werden dabei vermessen. Darunter sind auch Perowskit-Solarzellen. Sie zeichnen sich durch hohe Effizienz zu geringen Herstellungskosten aus. Das Team um Dr. Carolin Ulbrich und Dr. Mark Khenkin hat Messdaten aus vier Jahren ausgewertet und in der Fachzeitschrift Advanced Energy Materials vorgestellt. Dies ist die bislang längste Messreihe zu Perowskit-Zellen im Außeneinsatz. Eine Erkenntnis: Standard-Perowskit-Solarzellen funktionieren während der Sommersaison auch über mehrere Jahre sehr gut, lassen jedoch in der dunkleren Jahreszeit etwas nach. Die Arbeit ist ein wichtiger Beitrag, um das Verhalten von Perowskit-Solarzellen unter realen Bedingungen zu verstehen.

  • Natrium-Ionen-Batterien: Neuer Speichermodus für Kathodenmaterialien
    Science Highlight
    18.07.2025
    Natrium-Ionen-Batterien: Neuer Speichermodus für Kathodenmaterialien
    Batterien funktionieren, indem Ionen zwischen zwei chemisch unterschiedlichen Elektroden gespeichert und ausgetauscht werden. Dieser Prozess wird Interkalation genannt. Bei der Ko-Interkalation werden dagegen sowohl Ionen als auch Lösungsmittelmoleküle in den Elektrodenmaterialien gespeichert, was bisher als ungünstig galt. Ein internationales Team unter der Leitung von Philipp Adelhelm hat nun jedoch gezeigt, dass die Ko-Interkalation in Natrium-Ionen-Batterien mit den geeigneten Kathodenmaterialien funktionieren kann. Dieser Ansatz bietet neue Entwicklungsmöglichkeiten für Batterien mit hoher Effizienz und schnellen Ladefähigkeiten. Die Ergebnisse wurden in Nature Materials veröffentlicht.