HZB an Helmholtz-Plattform für Detektortechnologien und Detektorsysteme beteiligt

Die Helmholtz-Gemeinschaft initiiert eine Plattform, um Detektortechnologien und Detektorsysteme weiter zu entwickeln. Ziel der Plattform –  die als Portfoliothema gefördert wird – ist es, Technologien zum Aufbau neuartiger Detektoren für Photonen, Neutronen sowie geladene Teilchen weiter zu entwickeln, die Datenübertragung und -auswertung zu optimieren und exemplarische Detektorprototypen zu entwerfen und zu bauen. Ein weiteres wichtiges Ziel ist die Vernetzung der Detektorlabore. Kleine Zentren können so an kostspieligen technologischen Entwicklungen teilhaben. Das HZB ist an der Plattform beteiligt und entwickelt Systeme für die Detektion von Neutronen, Photonen sowie intelligente, programmierbare Hardware für die Datenerfassung.

„Ein wichtiges Thema in der Neutronenforschung ist der Ersatz von Helium-3 in den Detektoren“, sagt der Koordinator der Neutronendetektorentwicklung in der Plattform, Dr. Thomas Wilpert. Helium-3 ist ein Nebenprodukt bei der Gewinnung von Tritium für militärische Zwecke. Auf Grund internationaler Abrüstung ist die Tritium-Produktion seit den 1990er Jahren deutlich zurückgegangen. Parallel dazu ist der Bedarf weltweit für verschiedene Anwendungen drastisch gestiegen, so dass ein Mangel an Helium-3 für Forschungszwecke deutlich spürbar ist.

Das HZB arbeitet deshalb gemeinsam mit Kooperationspartnern an der Entwicklung von Detektoren, die Bortrifluorid anstelle Helium-3 einsetzen. Dies ist eine wichtige Voraussetzung für ein erfolgreiches Upgrade des HZB-Flugzeitspektrometers NEAT. Für die Weiterentwicklung so genannter schneller Photonendetektoren wird zudem ein Messplatz am Elektronenspeicherring BESSY II des HZB eingerichtet.

HS

  • Link kopieren

Das könnte Sie auch interessieren

  • MXene als Energiespeicher: Vielseitiger als gedacht
    Science Highlight
    03.02.2026
    MXene als Energiespeicher: Vielseitiger als gedacht
    MXene-Materialien könnten sich für eine neue Technologie eignen, um elektrische Ladungen zu speichern. Die Ladungsspeicherung war jedoch bislang in MXenen nicht vollständig verstanden. Ein Team am HZB hat erstmals einzelne MXene-Flocken untersucht, um diese Prozesse im Detail aufzuklären. Mit dem in situ-Röntgenmikroskop „MYSTIIC” an BESSY II gelang es ihnen, die chemischen Zustände von Titanatomen auf den Oberflächen der MXene-Flocken zu kartieren. Die Ergebnisse zeigen, dass es zwei unterschiedliche Redox-Reaktionen gibt, die vom jeweils verwendeten Elektrolyten abhängen. Die Studie schafft eine Grundlage für die Optimierung von MXene-Materialien als pseudokapazitive Energiespeicher.
  • KI analysiert Dinosaurier-Fußabdrücke neu
    Science Highlight
    27.01.2026
    KI analysiert Dinosaurier-Fußabdrücke neu
    Seit Jahrzehnten rätseln Paläontolog*innen über geheimnisvolle dreizehige Dinosaurier-Fußabdrücke. Stammen sie von wilden Fleischfressern, sanften Pflanzenfressern oder sogar frühen Vögeln? Nun hat ein internationales Team künstliche Intelligenz eingesetzt, um dieses Problem anzugehen – und eine kostenlose App entwickelt, die es jeder und jedem ermöglicht, die Vergangenheit zu entschlüsseln.
  • Kompakter Elektronenbeschleuniger zur Aufbereitung von PFAS-belastetem Wasser
    Science Highlight
    19.01.2026
    Kompakter Elektronenbeschleuniger zur Aufbereitung von PFAS-belastetem Wasser
    So genannte Ewigkeitschemikalien oder PFAS-Verbindungen sind ein zunehmendes Umweltproblem. Ein innovativer Ansatz für die Aufbereitung von Wasser und Böden in PFAS-belasteten Gebieten kommt jetzt aus der Beschleunigerphysik: Hochenergetische Elektronen können PFAS-Moleküle durch Radiolyse in unschädliche Bestandteile zerlegen. Ein am HZB entwickelter Beschleuniger auf Basis eines SHF-Photoinjektors kann den dafür nötigen Elektronenstrahl liefern, zeigt nun eine Studie in PLOS One.