X-ray laser FLASH uncovers fast demagnetization process

Magnetic force microscope image of a 10 by 10 micron sample<br />showing the magnetic domains' labyrinthine structure.<br />

Magnetic force microscope image of a 10 by 10 micron sample
showing the magnetic domains' labyrinthine structure.
© Bastian Pfau

With the help of free-electron laser FLASH at the Helmholtz Research Centre DESY, an international team of researchers has recently described a most surprising effect that can result in faster demagnetization in ferromagnetic materials. This effect could be key to the continued miniaturization and acceleration of magnetic storage. Now, Prof. Dr. Stefan Eisebitt of the Helmholtz Zentrum Berlin (HZB) and TU Berlin and his team have published their findings in the current issue of the scientific journal Nature Communications (DOI 10.1038/ ncomms2108).

"The ability of a light pulse to effect localized changes to a material's magnetization is a well-known fact, but not until now have we been able to more closely observe the process, which has led to the discovery of a new mechanism," explains Stefan Eisebitt. This is because most ferromagnetic materials consist of a number of individual, differently oriented magnetic domains. "When bombarded with laser light, free electrons rush through the material, moving from one domain into an oppositely magnetized domain. These electrons carry part of the magnetization through the sample and are thus able to destroy the localized magnetization," explains TU Berlin's Bastian Pfau, junior researcher and the study’s primary author.

The TU Berlin, HZB, and DESY researchers along with their colleagues from the Universities of Hamburg and Paris, and from six other research institutes including SLAC – the Stanford Linear Accelerator Center in the US – all conducted their experiments at DESY's Hamburg-based free-electron laser FLASH. Previously, they had characterized the domain patterns at HZB's own synchrotron radiation source BESSY II and at Paris-based SOLEIL where they examined samples obtained from cobalt-platinum thin films whose nanoscale magnetic domains form labyrinthine structures. "Our results further demonstrate that the position and density of magnetic domain boundaries can influence demagnetization behavior," explains Stefan Eisebitt. "Our work has set the stage for a new approach to developing faster and smaller-sized magnetic storage specifically by building magnetic nanostructures."

AR

You might also be interested in

  • Scientists Develop New Technique to Image Fluctuations in Materials
    Science Highlight
    18.01.2023
    Scientists Develop New Technique to Image Fluctuations in Materials
    A team of scientists, led by researchers from the Max Born Institute in Berlin and Helmholtz-Zentrum Berlin in Germany and from Brookhaven National Laboratory and the Massachusetts Institute of Technology in the United States has developed a revolutionary new method for capturing high-resolution images of fluctuations in materials at the nanoscale using powerful X-ray sources. The technique, which they call Coherent Correlation Imaging (CCI), allows for the creation of sharp, detailed movies without damaging the sample by excessive radiation. By using an algorithm to detect patterns in underexposed images, CCI opens paths to previously inaccessible information. The team demonstrated CCI on samples made of thin magnetic layers, and their results have been published in Nature.
  • Spintronics: A new tool at BESSY II for chirality investigations
    Science Highlight
    24.10.2022
    Spintronics: A new tool at BESSY II for chirality investigations
    Information on complex magnetic structures is crucial to understand and develop spintronic materials. Now, a new instrument named ALICE II is available at BESSY II. It allows magnetic X-ray scattering in reciprocal space using a new large area detector. A team at HZB and Technical University Munich has demonstrated the performance of ALICE II by analysing helical and conical magnetic states of an archetypal single crystal skyrmion host. ALICE II is now available for guest users at BESSY II.
  • Dynamics in one-dimensional spin chains newly elucidated
    Science Highlight
    03.10.2022
    Dynamics in one-dimensional spin chains newly elucidated
    Neutron scattering is considered the method of choice for investigating magnetic structures and excitations in quantum materials. Now, for the first time, the evaluation of measurement data from the 2000s with new methods has provided much deeper insights into a model system – the 1D Heisenberg spin chains. A new toolbox is available for elucidating future quantum materials has been achieved.