Graphen auf Nickel: Elektronen verhalten sich wie Licht

In einer Graphen-Schicht auf Nickel wird jedes zweite <br />Kohlenstoff-Atom stark an ein darunterliegendes <br />Nickel-Atom gebunden, während das jeweils<br /> benachbarte C-Atom nicht auf einem Nickel-Atom sitzt.<br /> Diese Anordnung führt zu einer regelmäßigen Verzerrung <br />der Bienenwaben-Struktur, die eine freie Graphenschicht <br /> zeigen würde.

In einer Graphen-Schicht auf Nickel wird jedes zweite
Kohlenstoff-Atom stark an ein darunterliegendes
Nickel-Atom gebunden, während das jeweils
benachbarte C-Atom nicht auf einem Nickel-Atom sitzt.
Diese Anordnung führt zu einer regelmäßigen Verzerrung
der Bienenwaben-Struktur, die eine freie Graphenschicht
zeigen würde. © STM, A. Varykhalov, HZB

Dr. Andrei Varykhalov und Mitarbeiter aus der Gruppe um Prof. Dr. Oliver Rader haben an BESSY II die elektronischen Eigenschaften von  mit Graphen beschichtetem Nickel untersucht und dabei ein überraschendes Ergebnis erhalten. Sie konnten zeigen, dass sich die Leitungselektronen des Graphen eher wie Licht verhalten und weniger wie Teilchen. Dieses Verhalten hatten Physiker eigentlich nur für freischwebende Graphenschichten erwartet, die eine perfekte Bienenwabenstruktur aufweisen, nicht aber bei Graphen auf Nickel.

Obwohl Graphen nichts anderes ist als reiner Kohlenstoff, so besteht es streng genommen aus zwei Sorten von Kohlenstoffatomen. Die eine Sorte hat ihren nächst gelegenen Kohlenstoff-Nachbarn zur Rechten, die andere zur Linken. Nur wenn diese sogenannte  „Händigkeit“ genau austariert ist, kann lichtartiges Verhalten der Leitungselektronen im Graphen auftreten. Tatsächlich kann man sich das Bienenwabengitter aus abwechselnd rechtshändigen und linkshändigen Kohlenstoffatomen zusammengesetzt denken. Die Atome auf der Nickeloberfläche passen nun perfekt zum Graphen, allerdings nur für eine Hälfte der Kohlenstoffatome. Das Ergebnis ist wie die Reise nach Jerusalem mit der halben Anzahl Stühlen. Da die Hälfte der Kohlenstoffatome  „zwischen den Stühlen“ sitzen, gerät die sogenannte Händigkeit im Graphen vollkommen aus dem Lot.

Mit Photoelektronenspektroskopie bei BESSY II konnten die Physiker in Graphen auf Nickel nun so genannte Dirac-Kegel aus masselosen Fermionen  nachweisen, die das lichtartige Verhalten der Elektronen belegen. Im Anschluss an ihre Messungen konnten sie zwei theoretische Gruppen dafür gewinnen, mit neuen Erklärungsansätzen zu ihrer heutigen Veröffentlichung beizutragen.

„Diese Ergebnisse sind überraschend“, sagt Varykhalov. Der Grund liege in der Tatsache, dass die Nickel-Atome in zwei verschiedenen, sich kompensierenden Weisen mit den Kohlenstoff-Atomen des Graphen wechselwirken. Auf der einen Seite zerstören sie die perfekte hexagonale Symmetrie des Graphen-Gitters.  Auf der anderen Seite aber stellen sie zusätzliche Elektronen für die Graphen-Schicht zur Verfügung – was den “Schaden” wieder ausgleicht, der durch die Gitterstörung entstanden war.  „Wir haben damit einen fundamentalen Mechanismus aufgedeckt, der für mögliche Anwendungen interessant ist“, meint Varykhalov. Denn da Graphen in der Regel auf ein Trägersubstrat aufgebracht wird, könnten die „heilenden“ Extra-Elektronen auch durch eine elektrische Spannung eingespeist werden.Der Bericht der Physiker erschien in der Open-Access-Zeitschrift Physical Review X, der neuen Top-Zeitschriftvon Physical Review.

http://prx.aps.org/

A. Varykhalov et al. , Phys. Rev. X 2, 041017

  • Link kopieren

Das könnte Sie auch interessieren

  • Grüne Herstellung von Hybridmaterialien als hochempfindliche Röntgendetektoren
    Science Highlight
    08.05.2025
    Grüne Herstellung von Hybridmaterialien als hochempfindliche Röntgendetektoren
    Neue organisch-anorganische Hybridmaterialien auf Basis von Wismut sind hervorragend als Röntgendetektoren geeignet, sie sind deutlich empfindlicher als handelsübliche Röntgendetektoren und langzeitstabil. Darüber hinaus können sie ohne Lösungsmittel durch Kugelmahlen hergestellt werden, einem umweltfreundlichen Syntheseverfahren, das auch in der Industrie genutzt wird. Empfindlichere Detektoren würden die Strahlenbelastung bei Röntgenuntersuchungen erheblich reduzieren.

  • Energiespeicher: BAM, HZB und HU Berlin planen gemeinsames Berlin Battery Lab
    Nachricht
    07.05.2025
    Energiespeicher: BAM, HZB und HU Berlin planen gemeinsames Berlin Battery Lab
    Die Bundesanstalt für Materialforschung und -prüfung (BAM), das Helmholtz-Zentrum Berlin (HZB) und die Humboldt-Universität zu Berlin (HU Berlin) haben ein Memorandum of Understanding (MoU) zur Gründung des Berlin Battery Lab unterzeichnet. Das Labor wird die Expertise der drei Institutionen bündeln, um die Entwicklung nachhaltiger Batterietechnologien voranzutreiben. Die gemeinsame Forschungsinfrastruktur soll auch der Industrie für wegweisende Projekte in diesem Bereich offenstehen.
  • BESSY II: Einblick in ultraschnelle Spinprozesse mit Femtoslicing
    Science Highlight
    05.05.2025
    BESSY II: Einblick in ultraschnelle Spinprozesse mit Femtoslicing
    Einem internationalen Team ist es an BESSY II erstmals gelungen, einen besonders schnellen Prozess im Inneren eines magnetischen Schichtsystems, eines Spinventils, aufzuklären: An der Femtoslicing-Beamline von BESSY II konnten sie die ultraschnelle Entmagnetisierung durch spinpolarisierte Stromimpulse beobachten. Die Ergebnisse helfen bei der Entwicklung von spintronischen Bauelementen für die schnellere und energieeffizientere Verarbeitung und Speicherung von Information. An der Zusammenarbeit waren Teams der Universität Straßburg, des HZB, der Universität Uppsala sowie weiterer Universitäten beteiligt.