PD Dr. Silke Christiansen verstärkt Energieforschung
Die Werkstoffwissenschaftlerin PD Dr. Silke Christiansen leitet ab Januar 2013 am Helmholtz-Zentrum Berlin das neue Institut „Nanoarchitekturen für die Energiewandlung“. Damit baut das HZB die Solarenergieforschung weiter aus. Für den Aufbau des Instituts steht Frau Christiansen eine zusätzliche Finanzierung durch die Helmholtz-Rekrutierungsinitiative von 600.000 Euro pro Jahr über fünf Jahre zur Verfügung.
Zurzeit leitet Frau Christiansen eine unabhängige wissenschaftliche Technologieentwicklungsgruppe für „Photonische Nanostrukturen“ am Max-Planck-Institut für die Physik des Lichtes in Erlangen. Sie hat über 180 Veröffentlichungen in begutachteten Fachzeitschriften und hält 10 zugeteilte Patente.
In Zukunft wird Frau Christiansen neuartige Material-Komposite vornehmlich für Solarzellen der 3. Generation und solare Brennstoffe entwickeln. Dabei deckt sie die gesamte Forschungskette von Modellierung und Simulation über Charakterisierung und Nano-Analyse bis hin zur Entwicklung von Verfahrensprozessen und Bauelementen ab.
„Neue nanostrukturierte Materialien, Materialverbünde und Komposite werden ganz wesentlich für zukünftige Konzepte zur Energiegewinnung und Speicherung sein. Ich freue mich, dass ich jetzt in dem einzigartigen Umfeld, das Berlin und die Helmholtz-Gemeinschaft bieten, die Forschung auf diesem Gebiet mit voller Energie vorantreiben kann“, sagt Frau Christiansen
Das neue Institut passt von seiner Thematik hervorragend zu den Instituten für Silizium-Photovoltaik und dem im Sommer 2012 gegründeten Institut für Solare Brennstoffe und wird eng mit diesen Instituten zusammenarbeiten. Außerdem wird Frau Christiansen mit Arbeitsgruppen an Universitäten sowie Industriepartnern kooperieren. Auf dem Wilhelm Conrad-Röntgen-Campus in Adlershof wird Frau Christiansen mit ihrem Team an der Planung und am Aufbau des Energy Materials In-situ Laboratory (EMIL) mitarbeiten. Am Lise-Meitner-Campus in Wannsee wird sie die Expertise am HZB zur Elektronenmikroskopie konzentrieren.
arö
https://www.helmholtz-berlin.de/pubbin/news_seite?nid=13647;sprache=enA
- Link kopieren
-
Berliner Wissenschaftspreis geht an Philipp Adelhelm
Der Batterieforscher Prof. Dr. Philipp Adelhelm wird mit dem Berliner Wissenschaftspreis 2024 ausgezeichnet. Er ist Professor am Institut für Chemie der Humboldt-Universität zu Berlin (HU) und leitet eine gemeinsame Forschungsgruppe der HU und des Helmholtz-Zentrums Berlin (HZB). Der Materialwissenschaftler und Elektrochemiker forscht zur Entwicklung nachhaltiger Batterien, die eine Schlüsselrolle für das Gelingen der Energiewende spielen. International zählt er zu den führenden Expert*innen auf dem Gebiet der Natrium-Ionen-Batterien.
-
Langzeittest zeigt: Effizienz von Perowskit-Zellen schwankt mit der Jahreszeit
Auf dem Dach eines Forschungsgebäudes am Campus Adlershof läuft ein einzigartiger Langzeitversuch: Die unterschiedlichsten Solarzellen sind dort über Jahre Wind und Wetter ausgesetzt und werden dabei vermessen. Darunter sind auch Perowskit-Solarzellen. Sie zeichnen sich durch hohe Effizienz zu geringen Herstellungskosten aus. Das Team um Dr. Carolin Ulbrich und Dr. Mark Khenkin hat Messdaten aus vier Jahren ausgewertet und in der Fachzeitschrift Advanced Energy Materials vorgestellt. Dies ist die bislang längste Messreihe zu Perowskit-Zellen im Außeneinsatz. Eine Erkenntnis: Standard-Perowskit-Solarzellen funktionieren während der Sommersaison auch über mehrere Jahre sehr gut, lassen jedoch in der dunkleren Jahreszeit etwas nach. Die Arbeit ist ein wichtiger Beitrag, um das Verhalten von Perowskit-Solarzellen unter realen Bedingungen zu verstehen.
-
Natrium-Ionen-Batterien: Neuer Speichermodus für Kathodenmaterialien
Batterien funktionieren, indem Ionen zwischen zwei chemisch unterschiedlichen Elektroden gespeichert und ausgetauscht werden. Dieser Prozess wird Interkalation genannt. Bei der Ko-Interkalation werden dagegen sowohl Ionen als auch Lösungsmittelmoleküle in den Elektrodenmaterialien gespeichert, was bisher als ungünstig galt. Ein internationales Team unter der Leitung von Philipp Adelhelm hat nun jedoch gezeigt, dass die Ko-Interkalation in Natrium-Ionen-Batterien mit den geeigneten Kathodenmaterialien funktionieren kann. Dieser Ansatz bietet neue Entwicklungsmöglichkeiten für Batterien mit hoher Effizienz und schnellen Ladefähigkeiten. Die Ergebnisse wurden in Nature Materials veröffentlicht.