Chemische Reaktion am Katalysator in Echtzeit beobachtet

© Gregory Stewart at SLAC National Accelerator Laboratory

Eine internationale Gruppe von Wissenschaftlern hat am Freie-Elektronenlaser LCLS in Stanford erstmals in Echtzeit beobachtet, wie sich Kohlenmonoxid-Gas an der Oberfläche eines Katalysators genau verhält. Dabei wird ein Teil der CO-Moleküle offenbar dicht über der Oberfläche schwach gebunden. Damit können sich die Moleküle zwar nicht entfernen, bleiben aber parallel zur Oberfläche beweglich, so dass sie möglicherweise mit weiteren Reaktionspartnern reagieren können.Die Forscher konnten damit einen Teilschritt einer elementar wichtigen Reaktion aufklären.

Kohlenmonoxid ist ein geruchloses, giftiges Gas, das zum Beispiel bei der Verbrennung von Treibstoff entsteht. Erst ein geigneter Katalysator sorgt dafür, dass Kohlenmonoxid-Moleküle mit Luftsauerstoff zu ungiftigem Kohlendioxid-Gas weiterreagieren. Bislang war nur der grobe Ablauf dieses katalytischen Prozesses klar. „Katalysatoren werden bei so vielen industrierelevanten chemischen Reaktionen eingesetzt, dass es wirklich lohnt,  genauer hinzuschauen. Das haben wir hier am Beispiel eines elementaren Prozesses nun gemacht“, sagt Dr. Martin Beye vom HZB, der an der Studie beteiligt war.

Die Forscher haben untersucht, wie sich Kohlenmonoxid-Moleküle von einer Rutheniumoberfläche ablösen (desorbieren). Ruthenium ist ein Metall, das ähnlich wie Platin als Katalysator wirken kann. Mit ultrakurzen und hochintensiven Lichtblitzen am Freie-Elektronenlaser LCLS am SLAC in Stanford machten sie Momentaufnahmen, die Rückschlüsse darüber erlauben, wie sich die CO-Moleküle von der Katalysatoroberfläche lösen. Sie beobachteten, dass etwa ein Drittel der CO-Moleküle nicht direkt von der Oberfläche wegfliegt, sondern dicht über der Oberfläche in einer Art ”Zwischenzustand” gefangen wird. Diese schwache Bindung sorgt dafür, dass die Moleküle sich nicht wieder entfernen können, aber trotzdem parallel zur Oberfläche beweglich bleiben.Solche schwachgebunden, aktivierten Zustände könnten eine wichtige Rolle in katalytischen Prozesse spielen, vermuten die Forscher. Ihre Ergebnisse haben sie nun im Fachmagazin Science veröffentlicht.

Beteiligt an der internationalen Kollaboration waren Forscher aus dem Center for Free Electron Laser Science bei DESY und der Universität Hamburg, SLAC National Accelerator Laboratory, Helmholtz-Zentrum Berlin für Materialien und Energie, European XFEL, Universität Potsdam, Stockholm University, Technical University of Denmark, Stanford University, Fritz-Haber Institut. Hauptautor der Arbeit war Anders Nilsson, Stockholm University und SLAC.

Originalveröffentlichung:
“Real-Time Observation of Surface Bond Breaking with an X-ray Laser”; Martina Dell´Angela et al.; Science, 2013; DOI:10.1126/science.1231711


Presseinfo SLAC: Breakthrough Research Shows Chemical Reaction in Real Time


 

  • Link kopieren

Das könnte Sie auch interessieren

  • Schriftrollen aus buddhistischem Schrein an BESSY II virtuell entrollt
    Science Highlight
    23.07.2025
    Schriftrollen aus buddhistischem Schrein an BESSY II virtuell entrollt
    In der mongolischen Sammlung des Ethnologischen Museums der Staatlichen Museen zu Berlin befindet sich ein einzigartiger Gungervaa-Schrein. Der Schrein enthält auch drei kleine Röllchen aus eng gewickelten langen Streifen, die in Seide gewickelt und verklebt sind. Ein Team am HZB konnte die Schrift auf den Streifen teilweise sichtbar machen, ohne die Röllchen durch Aufwickeln zu beschädigen. Mit 3D-Röntgentomographie erstellten sie eine Datenkopie des Röllchens und verwendeten im Anschluss ein mathematisches Verfahren, um den Streifen virtuell zu entrollen. Das Verfahren wird auch in der Batterieforschung angewandt.
  • Helmholtz-Promotionspreis für Hanna Trzesniowski
    Nachricht
    09.07.2025
    Helmholtz-Promotionspreis für Hanna Trzesniowski
    Hanna Trzesniowski hat während ihrer Promotion am Helmholtz-Zentrum Berlin (HZB) an nickelbasierten Elektrokatalysatoren für die Wasserspaltung geforscht. Ihre Arbeit trägt dazu bei, das Verständnis der alkalischen Wasserelektrolyse zu vertiefen und den Weg für die Entwicklung effizienterer und stabilerer Katalysatoren zu ebnen. Dafür erhielt sie am 8. Juli 2025 den Helmholtz-Promotionspreis, der die besten und originellsten Doktorarbeiten der Helmholtz-Gemeinschaft würdigt.
  • Forschung ganz nah! Die Lange Nacht der Wissenschaften am HZB
    Nachricht
    20.06.2025
    Forschung ganz nah! Die Lange Nacht der Wissenschaften am HZB
    Am 28. Juni ist es wieder so weit: Die Lange der Wissenschaften findet von 17 - 0 Uhr in Berlin und auch in Adlershof statt. Werfen Sie einen Blick hinter die Kulissen unserer spannenden Forschung!