Ultraschnelle Spin-Manipulation bei Terahertz-Frequenzen

Ein ultraschneller Spinstrom führt zur Emission elektromagnetischer Wellen im Terahertz-Bereich.

Ein ultraschneller Spinstrom führt zur Emission elektromagnetischer Wellen im Terahertz-Bereich. © H. D. Wöhrle/Universität Göttingen

Ein internationales Team hat einen Weg entdeckt, um Spins in einer bislang unerreichten Geschwindigkeit zu steuern. Dies ist für Datenverarbeitung und –Speicherung interessant. Sie nutzten dafür Femtosekunden-Laserpulse über einen weiten Energiebereich bis zu Terahertz-Frequenzen. An der Arbeit waren Forscher vom Fritz-Haber-Institut, der Universitäten Göttingen und Uppsala sowie vom Forschungszentrum Jülich und Helmholtz-Zentrum Berlin beteiligt; ihre Ergebnisse sind nun in der Online-Ausgabe von Nature Nanotechnology publiziert.

Die Wissenschaftler entwickelten ein wenige Nanometer dickes Schichtsystem aus unterschiedlichen Metallen. Durch einen ultrakurzen Laserpuls angeregt, entsteht darin ein so genannter Spinstrom. Dieser  ebenfalls ultrakurze Spinstrom kann sehr gezielt beeinflusst werden, sowohl was seine Form als auch seine Dauer betrifft. Der Spinstrom lässt sich nach der Speicherung in einen konventionellen Ladungsstrom umwandeln, der wiederum elektromagnetische Strahlung im Terahertz-Frequenzbereich erzeugt. Durch den Einsatz von unterschiedlichen Materialien wie Ruthenium oder Gold konnten die Forscher das Spektrum der elektromagnetischen Wellen steuern. Die Ergebnisse könnten es ermöglichen, neue Materialien zu entwerfen, in denen magnetische Muster deutlich schneller gespeichert werden können.

Originalveröffentlichung: T. Kampfrath et al. „Terahertz spin current pulses controlled by magnetic heterostructures”, Nature Nanotechnology 2013, doi: http://dx.doi.org/10.1038/NNANO.2013.43.

Zur Presseinfo der Universität Göttingen:

arö/IR/Uni Göttingen

  • Link kopieren

Das könnte Sie auch interessieren

  • MAX IV und BESSY II treiben Materialwissenschaften gemeinsam voran
    Nachricht
    17.06.2025
    MAX IV und BESSY II treiben Materialwissenschaften gemeinsam voran
    Das schwedische Synchrotron-Labor MAX IV und das Helmholtz-Zentrum Berlin (HZB) mit der Synchrotronstrahlungsquelle BESSY II haben am 16. Juni eine Kooperationsvereinbarung mit fünfjähriger Laufzeit unterzeichnet. Sie schafft den Rahmen für eine verstärkte Zusammenarbeit bei der operativen und technologischen Entwicklung in den Bereichen Beschleunigerforschung und -entwicklung, Strahlführungen und Optik, Experimentierstationen und Probenumgebungen sowie Digitalisierung und Datenwissenschaft.
  • Perowskit-Forschung: Hybridmaterialien als hochempfindliche Röntgendetektoren
    Science Highlight
    08.05.2025
    Perowskit-Forschung: Hybridmaterialien als hochempfindliche Röntgendetektoren
    Neue organisch-anorganische Hybridmaterialien auf Basis von Wismut sind hervorragend als Röntgendetektoren geeignet, sie sind deutlich empfindlicher als handelsübliche Röntgendetektoren und langzeitstabil. Darüber hinaus können sie ohne Lösungsmittel durch Kugelmahlen hergestellt werden, einem umweltfreundlichen Syntheseverfahren, das auch in der Industrie genutzt wird. Empfindlichere Detektoren würden die Strahlenbelastung bei Röntgenuntersuchungen erheblich reduzieren.

  • Energiespeicher: BAM, HZB und HU Berlin planen gemeinsames Berlin Battery Lab
    Nachricht
    07.05.2025
    Energiespeicher: BAM, HZB und HU Berlin planen gemeinsames Berlin Battery Lab
    Die Bundesanstalt für Materialforschung und -prüfung (BAM), das Helmholtz-Zentrum Berlin (HZB) und die Humboldt-Universität zu Berlin (HU Berlin) haben ein Memorandum of Understanding (MoU) zur Gründung des Berlin Battery Lab unterzeichnet. Das Labor wird die Expertise der drei Institutionen bündeln, um die Entwicklung nachhaltiger Batterietechnologien voranzutreiben. Die gemeinsame Forschungsinfrastruktur soll auch der Industrie für wegweisende Projekte in diesem Bereich offenstehen.